Prediction of Cryptocurrency Price using Time Series Data and Deep Learning Algorithms

被引:0
|
作者
Nair, Michael [1 ]
Marie, Mohamed I. [2 ]
Abd-Elmegid, Laila A. [2 ]
机构
[1] Higher Technol Inst, Dept Informat Syst, Heliopolis, Cairo, Egypt
[2] Helwan Univ, Fac Comp & Artificial Intelligence, Dept Informat Syst, Cairo, Egypt
关键词
-Cryptocurrency; deep learning; prediction; LSTM; LSTM; GRU;
D O I
10.14569/IJACSA.2023.0140837
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
One of the most significant and extensively utilized cryptocurrencies is Bitcoin (BTC). It is used in many different financial and business activities. Forecasting cryptocurrency prices are crucial for investors and academics in this industry because of the frequent volatility in the price of this currency. However, because of the nonlinearity of the cryptocurrency market, it is challenging to evaluate the unique character of time-series data, which makes it impossible to provide accurate price forecasts. Predicting cryptocurrency prices has been the subject of several research studies utilizing machine learning (ML) and deep learning (DL) based methods. This research suggests five different DL approaches. To forecast the price of the bitcoin cryptocurrency, recurrent neural networks (RNN), long short -term memories (LSTM), gated recurrent units (GRU), bidirectional long short-term memories (Bi-LSTM), and 1D convolutional neural networks (CONV1D) were used. The experimental findings demonstrate that the LSTM outperformed RNN, GRU, Bi-LSTM, and CONV1D in terms of prediction accuracy using measures such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared score (R2). With RMSE= 1978.68268, MAE=1537.14424, MSE= 3915185.15068, and R2= 0.94383, it may be considered the best method.
引用
收藏
页码:338 / 347
页数:10
相关论文
共 50 条
  • [1] Cryptocurrency Price Prediction Using Time Series and Social Sentiment Data
    Pang, Yan
    Sundararaj, Ganeshkumar
    Ren, Jiewen
    [J]. BDCAT'19: PROCEEDINGS OF THE 6TH IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, 2019, : 35 - 42
  • [2] Cryptocurrency Price Prediction Using Supervised Machine Learning Algorithms
    Chaudhary, Divya
    Saroj, Sushil Kumar
    [J]. ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2023, 12 (01):
  • [3] Cryptocurrency Price Prediction Using Frequency Decomposition and Deep Learning
    Jin, Chuantai
    Li, Yong
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [4] Cryptocurrency Price Prediction using Time Series Forecasting (ARIMA)
    Kumar, Sampat U.
    Aanandhi, S. P.
    Akhilaa, S. P.
    Vardarajan, Vijayakumar
    Sathiyanarayanan, Mithileysh
    [J]. 2021 4TH INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECHNOLOGY AND INTELLIGENT SYSTEMS (ISRITI 2021), 2020,
  • [5] Comparitive Study of Time Series and Deep Learning Algorithms for Stock Price Prediction
    Sivapurapu, Santosh Ambaprasad
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (06) : 460 - 470
  • [6] Probabilistic deep learning and transfer learning for robust cryptocurrency price prediction
    Golnari, Amin
    Komeili, Mohammad Hossein
    Azizi, Zahra
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [7] Stock price prediction using time series, econometric, machine learning, and deep learning models
    Chatterjee, Ananda
    Bhowmick, Hrisav
    Sen, Jaydip
    [J]. arXiv, 2021,
  • [8] Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models
    Chatterjee, Ananda
    Bhowmick, Hrisav
    Sen, Jaydip
    [J]. 2021 IEEE Mysore Sub Section International Conference, MysuruCon 2021, 2021, : 289 - 296
  • [9] Investigating the effectiveness of Twitter sentiment in cryptocurrency close price prediction by using deep learning
    Amirshahi, Bahareh
    Lahmiri, Salim
    [J]. EXPERT SYSTEMS, 2023, 42 (01)
  • [10] Investigating the effectiveness of Twitter sentiment in cryptocurrency close price prediction by using deep learning
    Amirshahi, Bahareh
    Lahmiri, Salim
    [J]. EXPERT SYSTEMS, 2023,