High-energy harmonic maps and degeneration of minimal surfaces

被引:1
|
作者
Ouyang, Charles [1 ]
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
SPACETIMES; GEOMETRY; TREES;
D O I
10.2140/gt.2023.27.1691
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a closed surface of genus g > 2 and p a maximal PSL(2, R) x PSL(2, R) surface group representation. By a result of Schoen, there is a unique p-equivariant minimal surface & DAG;z in H2 x H2. We study the induced metrics on these minimal surfaces and prove the limits are precisely mixed structures. We prove a similar result for maximal surfaces in AdS3. In the second half of the paper, we provide a geometric interpretation: the minimal surfaces & DAG;z degenerate to the core of a product of two R-trees. As a consequence, we obtain a compactification of the space of maximal representations of n -1(S) into PSL(2, R) x PSL(2, R).
引用
收藏
页码:1691 / 1746
页数:57
相关论文
共 50 条