p-Capacity with Bessel Convolution

被引:0
|
作者
Horvath, a. P. [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Anal, Inst Math, Muegyet rkp 3, H-1111 Budapest, Hungary
[2] Alfred Reny Inst Math, Dept Anal & Operat Res, Realtanoda St 13-15, H-1053 Budapest, Hungary
关键词
Nonlinear potential; Bessel convolution; Laplace-Bessel equation; Wolff inequality; Weighted hausdorff measure; POTENTIAL SPACES;
D O I
10.1007/s11118-023-10097-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and examine nonlinear potential by Bessel convolution with Bessel kernel. We investigate removable sets with respect to Laplace-Bessel inequality. By studying the maximal and fractional maximal measure, a Wolff type inequality is proved. Finally the relation of B-p capacity and B-Lipschitz mapping, and the B-p capacity and weighted Hausdorff measure and the B-p capacity of Cantor sets are examined.
引用
收藏
页码:1487 / 1511
页数:25
相关论文
共 50 条
  • [1] p-Capacity with Bessel Convolution
    Á. P. Horváth
    Potential Analysis, 2024, 60 : 1487 - 1511
  • [2] ON THE CONTINUITY OF THE P-CAPACITY
    STRUGOV, IF
    DOKLADY AKADEMII NAUK SSSR, 1990, 314 (01): : 138 - 140
  • [3] ON THE RELATIVE P-CAPACITY
    HORIUCHI, T
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1991, 43 (03) : 605 - 617
  • [4] Gaussian p-Capacity
    Liu, Liguang
    Xiao, Jie
    Yang, Dachun
    Yuan, Wen
    GAUSSIAN CAPACITY ANALYSIS, 2018, 2225 : 37 - 53
  • [5] EXTREMAL LENGTH AND P-CAPACITY
    ZIEMER, WP
    MICHIGAN MATHEMATICAL JOURNAL, 1969, 16 (01) : 43 - &
  • [6] P-MODULE AND P-CAPACITY OF THE CYLINDER
    CARAMAN, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (18): : 829 - 832
  • [7] p-Capacity and p-Hyperbolicity of Submanifolds
    Holopainen, Ilkka
    Markvorsen, Steen
    Palmer, Vicente
    REVISTA MATEMATICA IBEROAMERICANA, 2009, 25 (02) : 709 - 738
  • [8] ON THE VARIATIONAL p-CAPACITY PROBLEM IN THE PLANE
    Xiao, Jie
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (03) : 959 - 968
  • [9] The Dual Minkowski Problem for p-Capacity
    Ji, Lewen
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (06)
  • [10] The Orlicz Minkowski problem for the electrostatic p-capacity
    Xiong, Ge
    Xiong, Jiawei
    ADVANCES IN APPLIED MATHEMATICS, 2022, 137