Predictive modeling for the development of diabetes mellitus using key factors in various machine learning approaches

被引:3
|
作者
Tanaka, Marenao [1 ,2 ]
Akiyama, Yukinori [3 ]
Mori, Kazuma [4 ]
Hosaka, Itaru [5 ]
Kato, Kenichi [5 ]
Endo, Keisuke [1 ]
Ogawa, Toshifumi [1 ,6 ]
Sato, Tatsuya [1 ,6 ]
Suzuki, Toru [1 ,7 ]
Yano, Toshiyuki [1 ]
Ohnishi, Hirofumi [8 ]
Hanawa, Nagisa [9 ]
Furuhashi, Masato [1 ]
机构
[1] Sapporo Med Univ, Dept Cardiovasc Renal & Metab Med, Sch Med, S-1,W-16,Chuo Ku, Sapporo 0608543, Japan
[2] Tanaka Med Clin, Yoichi, Japan
[3] Sapporo Med Univ, Dept Neurosurg, Sapporo, Japan
[4] Natl Def Med Coll, Dept Immunol & Microbiol, Tokorozawa, Japan
[5] Sapporo Med Univ, Sch Med, Dept Cardiovasc Surg, Sapporo, Japan
[6] Sapporo Med Univ, Dept Cellular Physiol & Signal Transduct, Sch Med, Sapporo, Japan
[7] Natori Toru Internal Med & Diabet Clin, Natori, Japan
[8] Sapporo Med Univ, Sch Med, Dept Publ Hlth, Sapporo, Japan
[9] Keijinkai Maruyama Clin, Dept Hlth Checkup & Promot, Sapporo, Japan
来源
基金
日本学术振兴会;
关键词
Arti ficial intelligence; Machine learning; Diabetes mellitus; Fatty liver index; FATTY LIVER INDEX; RISK;
D O I
10.1016/j.deman.2023.100191
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims: Machine learning (ML) approaches are beneficial when automatic identification of relevant features among numerous candidates is desired. We investigated the predictive ability of several ML models for new onset of diabetes mellitus. Methods: In 10,248 subjects who received annual health examinations, 58 candidates including fatty liver index (FLI), which is calculated by using waist circumference, body mass index and levels of triglycerides and g-glutamyl transferase, were used. Results: During a 10-year follow-up period (mean period: 6.9 years), 322 subjects (6.5 %) in the training group (70 %, n=7,173) and 127 subjects (6.2 %) in the test group (30 %, n=3,075) had new onset of diabetes mellitus. Hemoglobin A1c, fasting glucose and FLI were identified as the top 3 predictors by random forest feature selection with 10-fold cross-validation. When hemoglobin A1c and FLI were used as the selected features, C-statistics analogous in receiver operating characteristic curve analysis in ML models including logistic regression, naive Bayes, extreme gradient boosting and artificial neural network were 0.874, 0.869, 0.856 and 0.869, respectively. There was no significant difference in the discriminatory capacity among the ML models. Conclusions: ML models incorporating hemoglobin A1c and FLI provide an accurate and straightforward approach for predicting the development of diabetes mellitus. (c) 2023 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NCND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Metabolic Syndrome and Development of Diabetes Mellitus: Predictive Modeling Based on Machine Learning Techniques
    Perveen, Sajida
    Shahbaz, Muhammad
    Keshavjee, Karim
    Guergachi, Aziz
    IEEE ACCESS, 2019, 7 : 1365 - 1375
  • [2] Predictive models for diabetes mellitus using machine learning techniques
    Lai, Hang
    Huang, Huaxiong
    Keshavjee, Karim
    Guergachi, Aziz
    Gao, Xin
    BMC ENDOCRINE DISORDERS, 2019, 19 (01)
  • [3] Predictive models for diabetes mellitus using machine learning techniques
    Hang Lai
    Huaxiong Huang
    Karim Keshavjee
    Aziz Guergachi
    Xin Gao
    BMC Endocrine Disorders, 19
  • [4] Predictive modeling of multi-class diabetes mellitus using machine learning and filtering iraqi diabetes data dynamics
    Sahid, Md Abdus
    Babar, Mozaddid Ul Hoque
    Uddin, Md Palash
    PLOS ONE, 2024, 19 (05):
  • [5] A comprehensive analysis of stroke risk factors and development of a predictive model using machine learning approaches
    Songquan Xie
    Shuting Peng
    Long Zhao
    Binbin Yang
    Yukun Qu
    Xiaoping Tang
    Molecular Genetics and Genomics, 2025, 300 (1)
  • [6] Predictive Supervised Machine Learning Models for Diabetes Mellitus
    Muhammad L.J.
    Algehyne E.A.
    Usman S.S.
    SN Computer Science, 2020, 1 (5)
  • [7] Predictive Modeling of Angiotensin I-Converting Enzyme Inhibitory Peptides Using Various Machine Learning Approaches
    Wang, Yu-Tang
    Russo, Daniel P.
    Liu, Chang
    Zhou, Qian
    Zhu, Hao
    Zhang, Ying-Hua
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (43) : 12132 - 12140
  • [8] Diabetes Mellitus Disease Prediction and Type Classification Involving Predictive Modeling Using Machine Learning Techniques and Classifiers
    Ahamed, B. Shamreen
    Arya, Meenakshi S.
    Sangeetha, S. K. B.
    Auxilia Osvin, Nancy V.
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [9] A Predictive Model for Diabetes Mellitus Using Machine Learning Techniques (A Study in Nigeria)
    Evwiekpaefe, Abraham Eseoghene
    Abdulkadir, Nafisat
    AFRICAN JOURNAL OF INFORMATION SYSTEMS, 2023, 15 (01):
  • [10] Predictive Modeling of Type 2 Diabetes and Complications Using Machine Learning
    Khattab, Ahmed
    Chen, Shang-Fu
    Sadaei, Hossein J.
    Torkamani, Ali
    DIABETES, 2023, 72