Variational Relational Point Completion Network for Robust 3D Classification

被引:8
|
作者
Pan, Liang [1 ]
Chen, Xinyi [1 ]
Cai, Zhongang [2 ,3 ]
Zhang, Junzhe [1 ,2 ]
Zhao, Haiyu [2 ,3 ]
Yi, Shuai [2 ,3 ]
Liu, Ziwei [1 ]
机构
[1] Nanyang Technol Univ, S Lab, Singapore 639798, Singapore
[2] SenseTime Res, Hong Kong, Peoples R China
[3] Shanghai AI Lab, Shanghai 200041, Peoples R China
关键词
3D perception; multi-view partial point clouds; point cloud completion; self-attention operations;
D O I
10.1109/TPAMI.2023.3268305
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.
引用
收藏
页码:11340 / 11351
页数:12
相关论文
共 50 条
  • [1] Variational Relational Point Completion Network
    Pan, Liang
    Chen, Xinyi
    Cai, Zhongang
    Zhang, Junzhe
    Zhao, Haiyu
    Yi, Shuai
    Liu, Ziwei
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8520 - 8529
  • [2] Semantic Point Completion Network for 3D Semantic Scene Completion
    Zhong, Min
    Zeng, Gang
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 2824 - 2831
  • [3] 3D GRID TRANSFORMATION NETWORK FOR POINT CLOUD COMPLETION
    Deng, Xiaobao
    Hu, Xiaolin
    Buris, Nicholas E.
    An, Ping
    Chen, Yilei
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3642 - 3646
  • [4] Contrastive Learning for 3D Point Clouds Classification and Shape Completion
    Nazir, Danish
    Afzal, Muhammad Zeshan
    Pagani, Alain
    Liwicki, Marcus
    Stricker, Didier
    SENSORS, 2021, 21 (21)
  • [5] Lightweight 3D Point Cloud Classification Network
    Xin, Zihao
    Wang, Hongyuan
    Zhang, Ji
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT II, 2022, 1701 : 95 - 105
  • [6] 3D Object Classification with Point Convolution Network
    Chen, Xuzhan
    Chen, Youping
    Najjaran, Homayoun
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 783 - 788
  • [7] PointGuard: Provably Robust 3D Point Cloud Classification
    Liu, Hongbin
    Jia, Jinyuan
    Gong, Neil Zhenqiang
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 6182 - 6191
  • [8] 3D OBJECT DETECTION NETWORK COMBINED WITH POINT CLOUD COMPLETION
    Zhou, Jing
    Yu, Chao
    Zhang, Junchi
    Hu, Yiyu
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (05) : 789 - 809
  • [9] An Efficient Bidirectional Point Pyramid Attention Network for 3D Point Cloud Completion
    Li, Yang
    Xiao, Yao
    Gang, Jialin
    Yu, Qingjun
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [10] PF-Net: Point Fractal Network for 3D Point Cloud Completion
    Huang, Zitian
    Yu, Yikuan
    Xu, Jiawen
    Ni, Feng
    Le, Xinyi
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 7659 - 7667