Gambler's ruin with random stopping

被引:0
|
作者
Morrow, Gregory J. J. [1 ]
机构
[1] Univ Colorado, Dept Math, Colorado Springs, CO 80918 USA
关键词
Catastrophe; Fibonacci polynomial; gambler's ruin; runs;
D O I
10.1080/15326349.2023.2241066
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {Xj, j = 0} denote a Markov process on [-N - 1, N + 1]. {c}. Suppose P(Xj+ 1 = m + 1|Xj = m) = ph, P(Xj+ 1 = m 1|Xj = m) = (1 - p)h, all j = 1 and |m| = N, where p = 12 + bN and h = 1 - cN for cN = 12 a2/N2. Define P(Xj+ 1 = c|Xj = m) = cN, j = 0, |m| = N. {Xj} terminates at the first j such that Xj. {-N - 1, N + 1, c}. Let L = max{j = 0 : Xj = 0}. On . = {Xj terminates at c}, denote by R. and L., respectively, as the numbers of runs and steps from L until termination. Denote . = L. - 2R.. Then limN.8 E{e it N. | .} = Ca, b v c2+t2 cosh v c2+t2-cosh(2b) (a2+t2) sinh v c2+t2, where c2 = a2 + 4b2.
引用
收藏
页码:224 / 260
页数:37
相关论文
共 50 条
  • [1] Random orders and gambler's ruin
    Blass, A
    Braun, G
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [2] Delays in Gambler's Ruin and Random Relays
    Ohira, Toru
    IFAC PAPERSONLINE, 2018, 51 (14): : 207 - 211
  • [3] The gambler's ruin
    Coolidge, JL
    ANNALS OF MATHEMATICS, 1908, 10 : 181 - 192
  • [4] Gambler's Ruin and the ICM
    Diaconis, Persi
    Ethier, Stewart N.
    STATISTICAL SCIENCE, 2022, 37 (03) : 289 - 305
  • [5] Gambler's ruin estimates for random walks with symmetric spatially inhomogeneous increments
    Mustapha, Sami
    BERNOULLI, 2007, 13 (01) : 131 - 147
  • [6] Gambler's Ruin with Catastrophes and Windfalls
    Hunter, B.
    Krinik, A. C.
    Nguyen, C.
    Switkes, J. M.
    von Bremen, H. F.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2008, 2 (02) : 199 - 219
  • [7] Gambler's Ruin Bandit Problem
    Akbarzadeh, Nima
    Tekin, Cem
    2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 1236 - 1243
  • [8] The gambler's ruin problem with delays
    Gut, Allan
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (11) : 2549 - 2552
  • [9] GAMBLER'S RUIN: THE DURATION OF PLAY
    Katriel, Guy
    STOCHASTIC MODELS, 2014, 30 (03) : 251 - 271
  • [10] Statistical gambler's ruin problem
    Tsay, JJ
    Tsao, CA
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (07) : 1337 - 1359