Automatic and Quantitative Electroencephalographic Characterization of Drug-Resistant Epilepsy in Neonatal KCNQ2 Epileptic Encephalopathy

被引:0
|
作者
Zeng, Zheng [1 ]
Xu, Yan [2 ]
Chen, Chen [3 ]
Zhou, Ligang [1 ]
Wang, Yalin [1 ,4 ]
Liu, Minghui [1 ]
Meng, Long [1 ]
Zhou, Yuanfeng [2 ]
Chen, Wei [1 ,4 ]
机构
[1] Fudan Univ, Ctr Intelligent Med Elect, Sch Informat Sci & Technol, Shanghai 200433, Peoples R China
[2] Fudan Univ, Natl Childrens Med Ctr, Dept Neurol, Childrens Hosp, Shanghai 201102, Peoples R China
[3] Fudan Univ, Human Phenome Inst, Shanghai 201203, Peoples R China
[4] Fudan Univ, Human Phenome Inst, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
KCNQ2 epileptic encephalopathy; drugresistant epilepsy; electroencephalogram (EEG); gradient boosting decision tree (GBDT); STRUCTURAL ABNORMALITIES; FUNCTIONAL CONNECTIVITY; REFRACTORY EPILEPSY; SEIZURE DETECTION; EEG; CLASSIFICATION; PATTERN; ONSET; MULTICHANNEL; SELECTION;
D O I
10.1109/TNSRE.2023.3294909
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
KCNQ2 epileptic encephalopathy is relatively common in early-onset neonatal epileptic encephalopathy and seizure severity varied widely, categorized as drug-sensitive epilepsy and drug-resistant epilepsy. However, in clinical practice, anti-seizure medicines need to be gradually adjusted based on seizure control which undoubtedly increases the economic burden of patients, so further positive anti-seizure regimens depend on whether seizure severity can be predicted in advance. In this paper, we proposed a reliable assessment to differentiate between drug-sensitive epilepsy and drug-resistant epilepsy caused by KCNQ2 pathogenic variants. Based on the electroencephalogram (EEG) and electrooculogram (EOG) signals, twenty-four classical temporal and spectral domain features were extracted and Gradient Boosting Decision Tree (GBDT) was employed to distinguish between patients with drug-sensitive epilepsy and drug-resistant epilepsy. In addition, we also systematically investigated the impact of channel combination and feature combination based on the forward stepwise selection strategy. By employing selected channels and features, the classification accuracy can reach 81.25% with a sensitivity of 57.14% and specificity of 100%. Compared with the state-of-the-art techniques, including the functional network, effective network, and common spatial patterns, the improvement of accuracy ranges from 37.5% to 56.25%, indicating the superiority of our proposed method. Overall, the proposed method may provide a promising tool to distinguish different seizure outcomes of KCNQ2 epileptic encephalopathy.
引用
收藏
页码:3004 / 3014
页数:11
相关论文
共 50 条
  • [1] KCNQ2 encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy
    Weckhuysen, Sarah
    Mandelstam, Simone
    Suls, Arvid
    Audenaert, Dominique
    Deconinck, Tine
    Claes, Lieve R. F.
    Deprez, Liesbet
    Smets, Katrien
    Hristova, Dimitrina
    Yordanova, Iglika
    Jordanova, Albena
    Ceulemans, Berten
    Jansen, An
    Hasaerts, Daniele
    Roelens, Filip
    Lagae, Lieven
    Yendle, Simone
    Stanley, Thorsten
    Heron, Sarah E.
    Mulley, John C.
    Berkovic, Samuel F.
    Scheffer, Ingrid E.
    de Jonghe, Peter
    ANNALS OF NEUROLOGY, 2012, 71 (01) : 15 - 25
  • [2] Neuropathology findings in KCNQ2 neonatal epileptic encephalopathy.
    Legros, Ludovic
    Adle-Biassette, Homa
    Dozieres-Puyravel, Blandine
    Khung, Suonavy
    Elmaleh-Berges, Monique
    Lesca, Gaetan
    Delanoe, Catherine
    Biran, Valerie
    Auvin, Stephane
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2022, 99 : 36 - 39
  • [3] Characteristics of KCNQ2 variants causing either benign neonatal epilepsy or developmental and epileptic encephalopathy
    Goto, Ayako
    Ishii, Atsushi
    Shibata, Mami
    Ihara, Yukiko
    Cooper, Edward C.
    Hirose, Shinichi
    EPILEPSIA, 2019, 60 (09) : 1870 - 1880
  • [4] Severe neonatal epileptic encephalopathy and KCNQ2 mutation: neuropathological substrate?
    Meurs-van der Schoor, Charlotte Dalen
    van Weissenbruch, Mirjam
    van Kempen, Marjan
    Bugiani, Marianna
    Aronica, Eleonora
    Ronner, Hanneke
    Vermeulen, R. Jeroen
    FRONTIERS IN PEDIATRICS, 2014, 2
  • [5] KCNQ2 Epileptic Encephalopathy in Early Infancy
    Ananthanarayanan Kasinathan
    Naveen Sankhyan
    Pratibha Singhi
    The Indian Journal of Pediatrics, 2017, 84 : 877 - 878
  • [6] KCNQ2 Epileptic Encephalopathy in Early Infancy
    Kasinathan, Ananthanarayanan
    Sankhyan, Naveen
    Singhi, Pratibha
    INDIAN JOURNAL OF PEDIATRICS, 2017, 84 (11): : 877 - 878
  • [7] KCNQ2 Epileptic Encephalopathy Related Movement Disorders
    De La Torre, A.
    Pardo, A.
    Blackburn, J.
    Millichap, J.
    ANNALS OF NEUROLOGY, 2018, 84 : S370 - S370
  • [8] Neurodevelopmental Outcome in Patients with KCNQ2 Epileptic Encephalopathy
    Tondo, I.
    Trivisano, M.
    Cappelletti, S.
    Terracciano, A.
    De Palma, L.
    Pietrafusa, N.
    Gentile, S.
    Vigevano, F.
    Specchio, N.
    EPILEPSIA, 2018, 59 : S288 - S289
  • [9] KCNQ2 gene mutations and neonatal epilepsy
    Garcia, Emilio Garcia
    Moreno, Marta Jimenez
    Ojeda, Francisco de la Cerda
    MEDICINA CLINICA, 2021, 157 (12): : 590 - 590
  • [10] Gabapentin treatment in a patient with KCNQ2 developmental epileptic encephalopathy
    Soldovieri, Maria Virginia
    Freri, Elena
    Ambrosino, Paolo
    Rivolta, Ilaria
    Mosca, Ilaria
    Binda, Anna
    Murano, Carmen
    Ragona, Francesca
    Canafoglia, Laura
    Vannicola, Chiara
    Solazzi, Roberta
    Granata, Tiziana
    Castellotti, Barbara
    Messina, Giuliana
    Gellera, Cinzia
    Labalme, Audrey
    Lesca, Gaetan
    DiFrancesco, Jacopo C.
    Taglialatela, Maurizio
    PHARMACOLOGICAL RESEARCH, 2020, 160