Low-Carbon Economic Dispatch of Integrated Electricity-Gas Energy System Considering Carbon Capture, Utilization and Storage

被引:11
|
作者
Liu, Xinghua [1 ]
Li, Xiang [1 ]
Tian, Jiaqiang [2 ]
Yang, Guoqing [1 ]
Wu, Huibao [3 ]
Ha, Rong [4 ]
Wang, Peng [5 ]
机构
[1] Xian Univ Technol, Sch Elect Engn, Xian 710048, Peoples R China
[2] Anhui Univ, Sch Elect Engn & Automat, Hefei 230039, Peoples R China
[3] State Grid Xian Elect Power Supply Co, Xian 710000, Peoples R China
[4] Xian Jinze Elect Technol Co Ltd, Xian 710100, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Carbon dioxide; Emissions trading; Power systems; Natural gas; Combustion; Biological system modeling; Mathematical models; Low-carbon electricity; integrated electricity-gas system (IEGS); economic dispatch; carbon capture; utilization and storage (CCUS); mixed integer linear programming (MILP); POWER; STRATEGY;
D O I
10.1109/ACCESS.2023.3255508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of modern industry, while improving people's living standards, the over-exploitation of coal, oil and natural gas has led to a shortage of fossil energy, global warming and an increasingly serious deterioration of the ecological environment. To mitigate the greenhouse effect caused by excessive carbon emissions, the vigorous development of integrated electricity-gas system (IEGS) dominated by clean energy is the future trend of sustainable development of energy systems. In this paper, a bi-level optimal scheduling model is proposed for an IEGS considering carbon capture, utilization and storage (CCUS), and the ladder carbon trading mechanism is introduced to convert carbon emissions into economic benefits. The upper model is an optimal distribution model of natural gas network, and the lower model is a day-ahead economic dispatch model of power system. Based on the Karush-Kuhn-Tucher (KKT) condition and strong duality theory of the lower model, the bi-level model is transformed into a mixed integer linear programming (MILP), which is solved by calling CPLEX through the Yalmip toolbox of the Matlab platform. Finally, the reasonableness and validity of the model are verified by three arithmetic simulations. The results show that the proposed bi-level model for low-carbon economic dispatch of IEGS considering CCUS can effectively reduce the operating costs and carbon emissions of the system.
引用
下载
收藏
页码:25077 / 25089
页数:13
相关论文
共 50 条
  • [1] Low-carbon economic dispatch of integrated electricity and natural gas energy system considering carbon capture device
    Liu, Xinghua
    Li, Xiang
    Tian, Jiaqiang
    Cao, Hui
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2021,
  • [2] Low-carbon economic dispatch of electricity-gas systems
    Xiang, Yue
    Wu, Gang
    Shen, Xiaodong
    Ma, Yuhang
    Gou, Jing
    Xu, Weiting
    Liu, Junyong
    ENERGY, 2021, 226
  • [3] Low-carbon economic planning of integrated electricity-gas energy systems
    Xiang, Yue
    Guo, Yongtao
    Wu, Gang
    Liu, Junyong
    Sun, Wei
    Lei, Yutian
    Zeng, Pingliang
    ENERGY, 2022, 249
  • [4] Low-carbon Economic Dispatch of Integrated Energy System Considering Carbon Capture Power Plant and Multi-utilization of Hydrogen Energy
    Liu Y.
    Hu Z.
    Chen J.
    Weng C.
    Gao M.
    Liu S.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (01): : 31 - 40
  • [5] Robust Optimal Dispatch of Electricity-Gas-Heat Integrated Energy System Considering Carbon Capture, Utilization and Storage
    Luo P.
    Yan W.
    Wang Y.
    Li J.
    Lü Q.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (06): : 2077 - 2089
  • [6] "Source-load" Low-carbon Economic Dispatch of Integrated Energy System Considering Carbon Capture System
    Tian F.
    Jia Y.
    Ren H.
    Bai Y.
    Huang T.
    Dianwang Jishu/Power System Technology, 2020, 44 (09): : 3346 - 3354
  • [7] Low-Carbon Economic Dispatch of an Integrated Electricity-Gas-Heat Energy System with Carbon Capture System and Organic Rankine Cycle
    Xiong, Junhua
    Li, Huihang
    Wang, Tingling
    ENERGIES, 2023, 16 (24)
  • [8] Low-carbon Economic Dispatch of Electricity-gas-heat Integrated Energy System With Carbon Capture Equipment Considering Price-based Demand Response
    计及电价型需求侧响应含碳捕集设备的电-气-热综合能源系统低碳经济调度
    Zeng, Peng (752873348@qq.com), 1600, Power System Technology Press (45): : 447 - 459
  • [9] Low-carbon economic dispatch of integrated energy system with carbon capture power plant and multiple utilization of hydrogen energy
    Wang, Jiarui
    Ji, Xiu
    Meng, Xiangdong
    Bai, Yang
    Li, Meiyue
    Frontiers in Energy Research, 2024, 12
  • [10] Low carbon and economic optimal operation of electricity-gas integrated energy system considering demand response
    Duan, Jiandong
    Xia, Yerui
    Cheng, Ran
    Gao, Qi
    Liu, Fan
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 38