A priori estimates for the free boundary problem of incompressible inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion

被引:0
|
作者
Zhang, Wei [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 03期
基金
中国国家自然科学基金;
关键词
free boundary problem; Boussinesq; MHD-Boussinesq; incompressible flows; a priori; estimates; WATER-WAVE PROBLEM; BLOW-UP CRITERION; WELL-POSEDNESS; FREE-SURFACE; EULER EQUATIONS; LINEARIZED MOTION; LOCAL EXISTENCE; SOBOLEV SPACES; LIQUID;
D O I
10.3934/math.2023307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For all physical spatial dimensions n = 2 and 3, we establish a priori estimates of Sobolev norms for free boundary problem of inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion under the Taylor-type sign condition on the initial free boundary. It is different from MHD equations because the energy of the system is not conserved.
引用
收藏
页码:6074 / 6094
页数:21
相关论文
共 21 条