Hydrothermal stability of gamma-Al2O3 supports varied with crystal plane orientation of pseudo-boehmite precursor

被引:6
|
作者
Mo, Yufan [1 ]
Li, Chunli [1 ]
Li, Huiyu [1 ]
Estudillo-Wong, Luis Alberto [2 ]
Wu, Luming [3 ]
Wang, Yinbin [3 ]
Yu, Haibin [3 ]
Li, Dianqing [1 ]
Feng, Yongjun [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem, State Key Lab Chem Resource Engn, 15 Beisanhuan East Rd, Beijing 100029, Peoples R China
[2] Inst Politecn Nacl, Dept Soc & Polit Ambiental, CIIEMAD, Calle 30 junio 1520,Alcaldia GAM, Mexico City 07340, Mexico
[3] CNOOC Tianjin Chem Res & Design Inst Co Ltd, Tianjin 300131, Peoples R China
关键词
Pseudo-boehmite; Crystal plane orientation; Gamma alumina; Hydrothermal stability; SPHERICAL GAMMA-ALUMINA; PURE;
D O I
10.1016/j.ces.2024.119705
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Porous spherical gamma-alumina supports play the key role in the petroleum reforming industry with strict requirement in hydrothermal stability of pore structure. Here, a series of pseudo-boehmite samples with different crystal orientations were synthesized in a separate nucleation and aging steps method by adjusting the rotating speed. The pseudo-boehmite (PB-1000) at 1000 rpm yields a high (0 2 0) plane proportion of 44.52 %, which is comparable with that of 43.91 % for the Sasol Boehmite (SB) powder. The Al2O3-1000 from the PB-1000 demonstrated the highest content of gamma-Al2O3 phase, the lowest surface hydroxyl number of 1.56/nm(2), and the highest hydrothermal stability with the retention rate of 75.0 % (174 m(2)<middle dot>g(-1)) at 600 degrees C under water vapor for 120 h, which is comparable to that of 72.3 % (191 m(2)<middle dot>g(-1)) for the Sasol sample. It is the first time to investigate hydrothermal stability of alumina from the content of gamma-Al2O3 phase and the surface hydroxyl groups.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] SINTERING OF PSEUDO-BOEHMITE AND GAMMA-AL2O3
    TIJBURG, IIM
    DEBRUIN, H
    ELBERSE, PA
    GEUS, JW
    JOURNAL OF MATERIALS SCIENCE, 1991, 26 (21) : 5945 - 5949
  • [2] APPLICATION OF LANTHANUM TO PSEUDO-BOEHMITE AND GAMMA-AL2O3
    TIJBURG, IIM
    GEUS, JW
    ZANDBERGEN, HW
    JOURNAL OF MATERIALS SCIENCE, 1991, 26 (23) : 6479 - 6486
  • [3] FORMATION OF GAMMA-AL2O3 STRUCTURE FROM PSEUDO-BOEHMITE OF DIFFERENT DEGREES OF CRYSTALLINITY
    VLASOV, EA
    BASHMAKOVA, OA
    CHEREPKOV, GV
    SEMIN, EG
    DERYUZHKINA, VI
    MUKHLENOV, IP
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1978, 51 (03): : 495 - 498
  • [4] DEHYDRATION OF BOEHMITE, GAMMA-ALOOH, TO GAMMA-AL2O3
    WILSON, SJ
    JOURNAL OF SOLID STATE CHEMISTRY, 1979, 30 (02) : 247 - 255
  • [5] Preparation of high permeability γ-Al2O3 ultrafiltration membranes from pseudo-boehmite industrial precursor
    Li, Jing
    Wang, Ning
    Zhuang, Yanhong
    Xue, An
    Chen, Lu
    Li, Yang
    CERAMICS INTERNATIONAL, 2023, 49 (17) : 28943 - 28953
  • [6] PREPARATION AND CHARACTERIZATION OF FIBRILLAR BOEHMITE AND GAMMA-AL2O3
    BRUSASCO, R
    GNASSI, J
    TATIAN, C
    BAGLIO, J
    DWIGHT, K
    WOLD, A
    MATERIALS RESEARCH BULLETIN, 1984, 19 (11) : 1489 - 1496
  • [7] Preparation of Pseudo-boehmite and γ-Al2O3 by Polyaluminum Chloride II -Surfactant Influences
    Wang Yuan-Yuan
    Zhao Chang-Wei
    He Jin-Song
    Yan Yong
    Zhang Xiang-Lan
    Luan Zhao-Kun
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2012, 28 (02) : 302 - 306
  • [8] One-step mechanochemical transformation of bulk pseudo-boehmite into nanosized α-Al2O3
    Ma, Huirong
    Cen, Shangxu
    Yu, Zhongrui
    Xing, Xiangyuan
    Chen, Jingjing
    Wang, Dajian
    Dong, Chenlong
    Mao, Zhiyong
    CERAMICS INTERNATIONAL, 2022, 48 (23) : 35480 - 35485
  • [9] CRYSTAL-STRUCTURE ANALYSIS OF GAMMA-AL2O3
    KUSUNOKI, M
    IIJIMA, S
    JOURNAL OF ELECTRON MICROSCOPY, 1985, 34 (03): : 229 - 230
  • [10] REACTION OF ALLENE WITH GAMMA-AL2O3 AND NICKEL CARBONYL DEPOSITED ON GAMMA-AL2O3
    BAKULINA, GV
    DYKH, ZL
    LAFER, LI
    YAKERSON, VI
    TABER, AM
    MARDASHEV, YS
    KALECHITS, IV
    RUBINSHTEIN, AM
    BULLETIN OF THE ACADEMY OF SCIENCES OF THE USSR DIVISION OF CHEMICAL SCIENCE, 1977, 26 (01): : 225 - 225