Out-of-time-ordered correlator in the one-dimensional Kuramoto-Sivashinsky and Kardar-Parisi-Zhang equations

被引:1
|
作者
Roy, Dipankar [1 ]
Huse, David A. [2 ]
Kulkarni, Manas [1 ]
机构
[1] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560089, India
[2] Princeton Univ, Phys Dept, Princeton, NJ 08544 USA
关键词
SCALE-INVARIANT SOLUTIONS; LYAPUNOV EXPONENTS; LIQUID-FILM; PROPAGATION; INSTABILITY; WAVES; FLOW; TURBULENCE; STABILITY; POLYMERS;
D O I
10.1103/PhysRevE.108.054112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The out-of-time-ordered correlator (OTOC) has emerged as an interesting object in both classical and quantum systems for probing the spatial spread and temporal growth of initially local perturbations in spatially extended chaotic systems. Here, we study the (classical) OTOC and its "light cone" in the nonlinear Kuramoto-Sivashinsky (KS) equation, using extensive numerical simulations. We also show that the linearized KS equation exhibits a qualitatively similar OTOC and light cone, which can be understood via a saddle-point analysis of the linearly unstable modes. Given the deep connection between the KS (deterministic) and the Kardar-Parisi-Zhang (KPZ, which is stochastic) equations, we also explore the OTOC in the KPZ equation. While our numerical results in the KS case are expected to hold in the continuum limit, for the KPZ case it is valid in a discretized version of the KPZ equation. More broadly, our work unravels the intrinsic interplay between noise/instability, nonlinearity, and dissipation in partial differential equations (deterministic or stochastic) through the lens of OTOC.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: Limit distributions
    Roy, Dipankar
    Pandit, Rahul
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [2] Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation
    Nicoli, Matteo
    Vivo, Edoardo
    Cuerno, Rodolfo
    PHYSICAL REVIEW E, 2010, 82 (04):
  • [3] COMPARISON OF THE SCALE INVARIANT SOLUTIONS OF THE KURAMOTO-SIVASHINSKY AND KARDAR-PARISI-ZHANG EQUATIONS IN D-DIMENSIONS
    LVOV, VS
    PROCACCIA, I
    PHYSICAL REVIEW LETTERS, 1992, 69 (24) : 3543 - 3546
  • [4] Kardar-Parisi-Zhang growth on one-dimensional decreasing substrates
    Carrasco, I. S. S.
    Oliveira, T. J.
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [5] Unpredicted Scaling of the One-Dimensional Kardar-Parisi-Zhang Equation
    Fontaine, Come
    Vercesi, Francesco
    Brachet, Marc
    Canet, Leonie
    PHYSICAL REVIEW LETTERS, 2023, 131 (24)
  • [6] PROOF OF SCALE INVARIANT SOLUTIONS IN THE KARDAR-PARISI-ZHANG AND KURAMOTO-SIVASHINSKY EQUATIONS IN 1+1 DIMENSIONS - ANALYTICAL AND NUMERICAL RESULTS
    LVOV, VS
    LEBEDEV, VV
    PATON, M
    PROCACCIA, I
    NONLINEARITY, 1993, 6 (01) : 25 - 47
  • [7] Kardar-Parisi-Zhang universality in a one-dimensional polariton condensate
    Fontaine, Quentin
    Squizzato, Davide
    Baboux, Florent
    Amelio, Ivan
    Lemaitre, Aristide
    Morassi, Martina
    Sagnes, Isabelle
    Le Gratiet, Luc
    Harouri, Abdelmounaim
    Wouters, Michiel
    Carusotto, Iacopo
    Amo, Alberto
    Richard, Maxime
    Minguzzi, Anna
    Canet, Leonie
    Ravets, Sylvain
    Bloch, Jacqueline
    NATURE, 2022, 608 (7924) : 687 - +
  • [8] Kardar-Parisi-Zhang universality in the coherence time of nonequilibrium one-dimensional quasicondensates
    Amelio, Ivan
    Chiocchetta, Alessio
    Carusotto, Iacopo
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [9] Coupled Kardar-Parisi-Zhang Equations in One Dimension
    Ferrari, Patrik L.
    Sasamoto, Tomohiro
    Spohn, Herbert
    JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (03) : 377 - 399
  • [10] Coupled Kardar-Parisi-Zhang Equations in One Dimension
    Patrik L. Ferrari
    Tomohiro Sasamoto
    Herbert Spohn
    Journal of Statistical Physics, 2013, 153 : 377 - 399