Dual-targeting of artesunate and chloroquine to tumor cells and tumor-associated macrophages by a biomimetic PLGA nanoparticle for colorectal cancer treatment

被引:13
|
作者
Peng, Jianqing [1 ]
Zhou, Jia [1 ]
Sun, Runbin [5 ]
Chen, Yan [1 ]
Pan, Di [1 ]
Wang, Qin [1 ]
Chen, Yi [1 ]
Gong, Zipeng [1 ,4 ,6 ]
Du, Qianming [2 ,3 ]
机构
[1] Guizhou Med Univ, High Efficacy Applicat Nat Med Resources Engn Ctr, Sch Pharmaceut Sci, Guiyang 550025, Peoples R China
[2] Nanjing Med Univ, Nanjing Hosp 1, Gen Clin Res Ctr, Nanjing 210006, Peoples R China
[3] China Pharmaceut Univ, Sch Basic Med & Clin Pharm, Dept Clin Pharm, Nanjing 210009, Peoples R China
[4] Guizhou Med Univ, Guizhou Prov Engn Res Ctr Dev & Applicat Ethn Med, Guiyang, Peoples R China
[5] Nanjing Univ, Nanjing Drum Tower Hosp, Affiliated Hosp, Med Sch, Nanjing 210008, Peoples R China
[6] Guizhou Med Univ, Guizhou Prov Engn Res Ctr Dev & Applicat Ethn Med, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomimetic nanoparticle; PLGA; Dual; -targeting; PHOTODYNAMIC THERAPY; MEMBRANE; DELIVERY; PROGRESSION; EXPRESSION; GROWTH;
D O I
10.1016/j.ijbiomac.2023.125163
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The regimens on colorectal cancer (CRC) are clinically limited due to the ignorance of tumor-supportive mi-croenvironments. To combine the therapeutic effects on both tumor cells growth and immunosuppressive tumor microenvironments (TME), we propose the artesunate (AS) and chloroquine (CQ) combination and develop a poly (D,L-lactide-co-glycolide) (PLGA)-based biomimetic nanoparticle for dual-targeting delivery of the drug combination. Hydroxymethyl phenylboronic acid conjugated PLGA (HPA) is synthesized to form a reactive oxygen species (ROS)-sensitive core of biomimetic nanoparticles. A mannose-modified erythrocyte membrane (Man-EM) obtained by a novel surface modification method is cloaked on the AS and CQ-loaded HPA core to receive a biomimetic nanoparticle-HPA/AS/CQ@Man-EM. It holds a strong promise in inhibiting the prolifer-ation of CRC tumor cells and reversing the phenotypes of TAMs via targeting both tumor cells and M2-like tumor -associated macrophages (TAMs). Verifying in an orthotopic CRC mouse model, the biomimetic nanoparticles showed improved accumulation at tumor tissues and effectively suppressed the tumor growth via both inhibition of tumor cell growth and repolarization of TAMs. Notably, unbalanced distribution to the tumor cells and TAMs is the key to realize the remarkable anti-tumor effects. This work proposed an effective biomimetic nanocarrier for the CRC treatment.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Targeting tumor-associated macrophages for cancer treatment
    Mengjun Li
    Linye He
    Jing Zhu
    Peng Zhang
    Shufang Liang
    Cell & Bioscience, 12
  • [2] Targeting tumor-associated macrophages for cancer treatment
    Li, Mengjun
    He, Linye
    Zhu, Jing
    Zhang, Peng
    Liang, Shufang
    CELL AND BIOSCIENCE, 2022, 12 (01):
  • [3] Dual-Targeting of Tumor Cells and Tumor-Associated Macrophages by Palmitic Acid Modified Albumin Nanoparticles for Antitumor and Antimetastasis Therapy
    Feng, Jiaxing
    Xiang, Ling
    Fang, Changlong
    Tan, Yulu
    Li, Yan
    Gong, Ting
    Wu, Qingsi
    Gong, Tao
    Zhang, Zhirong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (13) : 14887 - 14902
  • [4] Targeting Tumor-Associated Macrophages in Cancer
    Pathria, Paulina
    Louis, Tiani L.
    Varner, Judith A.
    TRENDS IN IMMUNOLOGY, 2019, 40 (04) : 310 - 327
  • [5] Dual-targeting tumor cells and tumor associated macrophages with lipid coated calcium zoledronate for enhanced lung cancer chemoimmunotherapy
    Zang, Xinlong
    Zhou, Jingyi
    Zhang, Xiaoxu
    Chen, Dawei
    Han, Yantao
    Chen, Xuehong
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2021, 594
  • [6] Dual-targeting of tumor cells and tumor-associated macrophages by hyaluronic acid-modified MnO2 for enhanced sonodynamic therapy
    Liu, Yun
    Zhang, Ziying
    Xia, Yu
    Ran, Mengnan
    Wang, Qing
    Wu, Quanxin
    Yu, Wenhua
    Li, Cao
    Li, Shiying
    Guo, Ning
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 283
  • [7] Targeting Tumor-Associated Macrophages in Cancer Immunotherapy
    Petty, Amy J.
    Owen, Dwight H.
    Yang, Yiping
    Huang, Xiaopei
    CANCERS, 2021, 13 (21)
  • [8] Targeting tumor-associated macrophages for cancer immunotherapy
    Shu, Yongheng
    Cheng, Ping
    BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2020, 1874 (02):
  • [9] Targeting Tumor-Associated Macrophages for Cancer Therapy
    Yumul, Roma
    Richter, Maximilian
    Giovani, Michelle
    Kasahara, Noriyuki
    Lieber, Andre
    MOLECULAR THERAPY, 2014, 22 : S256 - S256
  • [10] Spatially targeting of tumor-associated macrophages and cancer cells for suppression of spontaneously metastatic tumor
    Zhou, Minglu
    Xie, Dandan
    Zhou, Zhou
    Li, Lian
    Huang, Yuan
    NANO RESEARCH, 2022, 15 (04) : 3446 - 3457