A Method for Rapid Measurement of Cloud Base Height From a Pair of Sky Imagers

被引:1
|
作者
Zou, Lianglin [1 ]
Song, Jifeng [2 ]
Niu, Yisen [1 ]
Yan, Zixuan [1 ]
Lin, Xilong [1 ]
机构
[1] North China Elect Power Univ, Sch Renewable Energy, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Inst Energy Power Innovat, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Clouds; Image segmentation; Feature extraction; Cameras; Fluctuations; Clustering algorithms; Moon; Binocular vision technology; cloud base height; feature points; semi-local matching;
D O I
10.1109/LGRS.2024.3369670
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Cloud base height, a crucial spatial parameter of cloud clusters, plays a significant role in the field of photovoltaics and other domains. In order to obtain the cloud base height information of the whole sky, the cloud base height measurement technology based on binocular vision technology has been developed. However, the current global matching method yields a single value, while the computational efficiency of the local matching technique remains inadequate. This letter proposes a fast measurement method for determining cloud base height using a semi-local matching technique. First, the ground-based cloud image is segmented to reduce the calculation amount of cloud base height. Subsequently, the individual cloud blocks are divided into clusters through clustering. Finally, matching points are identified for each individual cloud section using feature detection and matching, allowing for the computation of the cloud base height at multiple feature points within each cloud section. The experimental results, based on ceilometer as a reference, show that the proposed method has a better performance than the existing methods.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] Cloud height measurement by a network of all-sky imagers
    Benedikt Blum, Niklas
    Nouri, Bijan
    Wilbert, Stefan
    Schmidt, Thomas
    Luensdorf, Ontje
    Stuehrenberg, Jonas
    Heinemann, Detlev
    Kazantzidis, Andreas
    Pitz-Paal, Robert
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (07) : 5199 - 5224
  • [2] Stereographic methods for cloud base height determination using two sky imagers
    Dung Nguyen
    Kleissl, Jan
    [J]. SOLAR ENERGY, 2014, 107 : 495 - 509
  • [3] CLOUD BASE HEIGHT ESTIMATION USING HIGH-RESOLUTION WHOLE SKY IMAGERS
    Savoy, Florian M.
    Lemaitre, Joseph C.
    Dev, Soumyabrata
    Lee, Yee Hui
    Winkler, Stefan
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1622 - 1625
  • [4] Estimating Geo-Referenced Cloud-Base Height With Whole-Sky Imagers
    Lyu, Baolei
    Chen, Yang
    Guan, Yuqiu
    Gao, Tianlei
    Liu, Jun
    [J]. EARTH AND SPACE SCIENCE, 2021, 8 (08)
  • [5] Cloud base height from sky imager and cloud speed sensor
    Wang, Guang
    Kurtz, Ben
    Kleissl, Jan
    [J]. SOLAR ENERGY, 2016, 131 : 208 - 221
  • [6] Cloud base height estimates from sky imagery and a network of pyranometers
    Wang, Guang Chao
    Urquhart, Bryan
    Kleissl, Jan
    [J]. SOLAR ENERGY, 2019, 184 : 594 - 609
  • [7] ELIFAN, an algorithm for the estimation of cloud cover from sky imagers
    Lothon, Marie
    Barneoud, Paul
    Gabella, Omar
    Lohou, Fabienne
    Derrien, Solene
    Rondi, Sylvain
    Chiriaco, Marjolaine
    Bastin, Sophie
    Dupont, Jean-Charles
    Haeffelin, Martial
    Badosa, Jordi
    Pascal, Nicolas
    Montoux, Nadege
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (10) : 5519 - 5534
  • [8] The computation of cloud base height from paired whole-sky imaging cameras
    Mark C. Allmen
    Philip Kegelmeyer Jr.
    [J]. Machine Vision and Applications, 1997, 9 : 160 - 165
  • [9] The computation of cloud base height from paired whole-sky imaging cameras
    Allmen, MC
    Kegelmeyer, WP
    [J]. MACHINE VISION AND APPLICATIONS, 1997, 9 (04) : 160 - 165
  • [10] STEREOSCOPIC CLOUD BASE RECONSTRUCTION USING HIGH-RESOLUTION WHOLE SKY IMAGERS
    Savoy, Florian M.
    Dev, Soumyabrata
    Lee, Yee Hui
    Winkler, Stefan
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 141 - 145