Two-dimensional Weyl sums failing square-root cancellation along lines

被引:1
|
作者
Brandes, Julia [1 ,2 ]
Shparlinski, Igor E. [3 ]
机构
[1] Univ Gothenburg, Math Sci, S-41296 Gothenburg, Sweden
[2] Chalmers Inst Technol, S-41296 Gothenburg, Sweden
[3] Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, Australia
来源
ARKIV FOR MATEMATIK | 2023年 / 61卷 / 02期
基金
澳大利亚研究理事会; 瑞典研究理事会;
关键词
Exponential sums;
D O I
10.4310/ARKIV.2023.v61.n2.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a certain two-dimensional family of Weyl sums of length P takes values as large as P3/4+o(1) on almost all linear slices of the unit torus, contradicting a widely held expectation that Weyl sums should exhibit square-root cancellation on generic subvarieties of the unit torus. This is an extension of a result of J. Brandes, S. T. Parsell, C. Poulias, G. Shakan and R. C. Vaughan (2020) from quadratic and cubic monomials to general polynomials of arbitrary degree. The new ingredients of our approach are the classical results of E. Bombieri (1966) on exponential sums along a curve and R. J. Duffin and A. C. Schaeffer (1941) on Diophantine approximations by rational numbers with prime denominators.
引用
收藏
页码:267 / 276
页数:10
相关论文
共 50 条
  • [1] SQUARE-ROOT RULE OF TWO-DIMENSIONAL BANDWIDTH PROBLEM
    Lin, Lan
    Lin, Yixun
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2011, 45 (04): : 399 - 411
  • [2] SQUARE-ROOT CANCELLATION FOR SUMS OF FACTORIZATION FUNCTIONS OVER SHORT INTERVALS IN FUNCTION FIELDS
    Sawin, Will
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (05) : 997 - 1026
  • [3] Square-root cancellation for sums of factorization functions over squarefree progressions in Fq[t]
    Sawin, Will
    ACTA MATHEMATICA, 2024, 233 (02) : 285 - 418
  • [4] Square-root cancellation for the signs of Latin squares
    Alpoge, Levent
    COMBINATORICA, 2017, 37 (02) : 137 - 142
  • [5] Square-root cancellation for the signs of Latin squares
    Levent Alpoge
    Combinatorica, 2017, 37 : 137 - 142
  • [6] Square-root higher-order Weyl semimetals
    Song, Lingling
    Yang, Huanhuan
    Cao, Yunshan
    Yan, Peng
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] Square-root higher-order Weyl semimetals
    Lingling Song
    Huanhuan Yang
    Yunshan Cao
    Peng Yan
    Nature Communications, 13
  • [8] The Symmetrized Square-Root Potential: Exact Solutions and Application to the Two-Dimensional Massless Dirac Equation
    Schulze-Halberg, Axel
    FEW-BODY SYSTEMS, 2018, 59 (06)
  • [9] The Symmetrized Square-Root Potential: Exact Solutions and Application to the Two-Dimensional Massless Dirac Equation
    Axel Schulze-Halberg
    Few-Body Systems, 2018, 59
  • [10] FINITE-DIMENSIONAL DISTRIBUTIONS OF A SQUARE-ROOT DIFFUSION
    Gordy, Michael B.
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (04) : 930 - 942