Update on the Use of Artificial Intelligence in Hepatobiliary MR Imaging

被引:5
|
作者
Nakaura, Takeshi [1 ,2 ]
Kobayashi, Naoki [1 ]
Yoshida, Naofumi [1 ]
Shiraishi, Kaori [1 ]
Uetani, Hiroyuki [1 ]
Nagayama, Yasunori [1 ]
Kidoh, Masafumi [1 ]
Hirai, Toshinori [1 ]
机构
[1] Kumamoto Univ, Grad Sch Med Sci, Dept Diagnost Radiol, Kumamoto, Kumamoto, Japan
[2] Kumamoto Univ Hosp, Radiol, 1-1-1 Honjo,Chuo Ku, Kumamoto, Kumamoto 8608556, Japan
关键词
artificial intelligence; deep learning; machine learning; magnetic resonance imaging; CONVOLUTIONAL NEURAL-NETWORK; RADIOMICS; APPROXIMATE; TUMOR; MODEL;
D O I
10.2463/mrms.rev.2022-0102
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The application of machine learning (ML) and deep learning (DL) in radiology has expanded exponen-tially. In recent years, an extremely large number of studies have reported about the hepatobiliary domain. Its applications range from differential diagnosis to the diagnosis of tumor invasion and prediction of treatment response and prognosis. Moreover, it has been utilized to improve the image quality of DL reconstruction. However, most clinicians are not familiar with ML and DL, and previous studies about these concepts are relatively challenging to understand. In this review article, we aimed to explain the concepts behind ML and DL and to summarize recent achievements in their use in the hepatobiliary region.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 50 条
  • [1] Update on Hepatobiliary Imaging
    Gaschen, Lorrie
    [J]. VETERINARY CLINICS OF NORTH AMERICA-SMALL ANIMAL PRACTICE, 2009, 39 (03) : 439 - +
  • [2] Artificial Intelligence in Cardiovascular CT and MR Imaging
    Lanzafame, Ludovica R. M.
    Bucolo, Giuseppe M. M.
    Muscogiuri, Giuseppe
    Sironi, Sandro
    Gaeta, Michele
    Ascenti, Giorgio
    Booz, Christian
    Vogl, Thomas J. J.
    Blandino, Alfredo
    Mazziotti, Silvio
    D'Angelo, Tommaso
    [J]. LIFE-BASEL, 2023, 13 (02):
  • [3] Artificial Intelligence in CT and MR Imaging for Oncological Applications
    Paudyal, Ramesh
    Shah, Akash D.
    Akin, Oguz
    Do, Richard K. G.
    Konar, Amaresha Shridhar
    Hatzoglou, Vaios
    Mahmood, Usman
    Lee, Nancy
    Wong, Richard J.
    Banerjee, Suchandrima
    Shin, Jaemin
    Veeraraghavan, Harini
    Shukla-Dave, Amita
    [J]. CANCERS, 2023, 15 (09)
  • [4] Hepatobiliary Trauma Imaging Update
    Stephens, Johnathon
    Yu, Hei Shun
    Uyeda, Jennifer W.
    [J]. RADIOLOGIC CLINICS OF NORTH AMERICA, 2022, 60 (05) : 745 - 754
  • [5] Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 2024 Update
    Tejani, Ali S.
    Klontzas, Michail E.
    Gatti, Anthony A.
    Mongan, John T.
    Moy, Linda
    Park, Seong Ho
    Kahn Jr, Charles E.
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2024, 6 (04)
  • [6] Application of artificial intelligence in CT and MR imaging of ovarian cancer
    Zhou, Lili
    Wong, Chinting
    Li, Yubo
    Fu, Yu
    Yang, Qi
    [J]. CHINESE JOURNAL OF ACADEMIC RADIOLOGY, 2023, 6 (04) : 170 - 178
  • [7] Application of artificial intelligence in CT and MR imaging of ovarian cancer
    Lili Zhou
    Chinting Wong
    Yubo Li
    Yu Fu
    Qi Yang
    [J]. Chinese Journal of Academic Radiology, 2023, 6 : 170 - 178
  • [8] Diagnostic Imaging of the Hepatobiliary System An Update
    Marolf, Angela J.
    [J]. VETERINARY CLINICS OF NORTH AMERICA-SMALL ANIMAL PRACTICE, 2017, 47 (03) : 555 - +
  • [9] Functional hepatobiliary MR imaging in children
    Tamrazi, Anobel
    Vasanawala, Shreyas S.
    [J]. PEDIATRIC RADIOLOGY, 2011, 41 (10) : 1250 - 1258
  • [10] AN UPDATE ON RADIONUCLIDE IMAGING IN HEPATOBILIARY DISEASE
    ROSENTHALL, L
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1981, 245 (20): : 2065 - 2068