Homochiral Porous Metal-Organic Polyhedra with Multiple Kinds of Vertices

被引:22
|
作者
Tang, Xianhui [1 ,2 ]
Meng, Chunlong [1 ,2 ]
Rampal, Nakul [3 ]
Li, Aurelia [3 ]
Chen, Xu [2 ,3 ]
Gong, Wei [1 ,2 ]
Jiang, Hong [1 ,2 ]
Fairen-Jimenez, David [3 ]
Cui, Yong [1 ,2 ]
Liu, Yan [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[3] Univ Cambridge, Dept Chem Engn & Biotechnol, Adsorpt & Adv Mat Lab A2ML, Cambridge CB3 0AS, England
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
COORDINATION CAGES; AROMATIC-MOLECULES; CHEMISTRY; LIGAND; CONSTRUCTION; RECOGNITION; FRAMEWORKS; TETRAHEDRA; COMPLEXES; CHIRALITY;
D O I
10.1021/jacs.2c12424
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic polyhedra featuring non-Archime-dean/Platonic architectures with multiple kinds of vertices have aroused great attention for their fascinating structures and properties but are yet challenging to achieve. Here, we report a combinatorial strategy to make such nonclassic polyhedral cages by combining kinetically labile metal ions with non-planar organic linkers instead of the usual only inert metal centers and planar ligands. This facilitates the synthesis of an enantiopure twisted tetra(3-pyridyl)-based TADDOL (TADDOL = tetraaryl-1,3-dioxolane-4,5-dimethanol) ligand (L) capable of binding Ni(II) ions to produce a regular convex cage, Ni6L8, with two mixed metal/organic vertices and three rarely reported concave cages Ni14L8, Ni18L12, and Ni24L16 with three or four mixed vertices. Each of the cages has an amphiphilic cavity decorated with chiral dihydroxyl functionalities and packs into a three-dimensional structure. The enantioselective adsorption and separation performances of the cages are strongly dependent on their pore structure features. Particularly, Ni14L8 and Ni18L12 with wide openings can be solid adsorbents for the adsorptive and solid-phase extractive separation of a variety of racemic spirodiols with up to 98% ee, whereas Ni6L8 and Ni24L16 with smaller pore apertures cannot adsorb the racemates. The combination of single-crystal X-ray diffraction analysis of the host-guest adduct and GCMC simulation indicates that the enantiospecific recognition capabilities originate from the well-organized chiral inner sphere as well as multiple interactions within the chiral microenvironment. This work therefore provides an attractive strategy for the rational design of polyhedral cages, showing geometrically fascinating structures with properties different from those of classic assemblies.
引用
收藏
页码:2561 / 2571
页数:11
相关论文
共 50 条
  • [1] Homochiral porous metal-organic frameworks: Why and how?
    Lin, WB
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (08) : 2486 - 2490
  • [2] A homochiral metal-organic porous material for enantioselective separation and catalysis
    Seo, JS
    Whang, D
    Lee, H
    Jun, SI
    Oh, J
    Jeon, YJ
    Kim, K
    [J]. NATURE, 2000, 404 (6781) : 982 - 986
  • [3] Homochiral metal-organic porous materials for enantioselective recognition and electrocatalysis
    Zhang, Guangju
    Hu, Hailiang
    Li, Hao
    Zhao, Fangfang
    Liu, Yang
    He, Xiaodie
    Huang, Hui
    Xu, Yan
    Wei, Ying
    Kang, Zhenhui
    [J]. CRYSTENGCOMM, 2013, 15 (17): : 3288 - 3291
  • [4] Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks
    Prakash, M. Jaya
    Lah, Myoung Soo
    [J]. CHEMICAL COMMUNICATIONS, 2009, (23) : 3326 - 3341
  • [5] Ultrathin Films of Porous Metal-Organic Polyhedra for Gas Separation
    Andres, Miguel A.
    Carne-Sanchez, Arnau
    Sanchez-Lainez, Javier
    Roubeau, Olivier
    Coronas, Joaquin
    Maspoch, Daniel
    Gascon, Ignacio
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (01) : 143 - 147
  • [6] Chromium(II) Metal-Organic Polyhedra as Highly Porous Materials
    Park, Jinhee
    Perry, Zachary
    Chen, Ying-Pin
    Bae, Jaeyeon
    Zhou, Hong-Cai
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (33) : 28064 - 28068
  • [7] Porous Metal-Organic Polyhedra: Morphology, Porosity, and Guest Binding
    Argent, Stephen P.
    da Silva, Ivan
    Greenaway, Alex
    Savage, Mathew
    Humby, Jack
    Davies, Andrew J.
    Nowell, Harriott
    Lewis, William
    Manuel, Pascal
    Tang, Chiu C.
    Blake, Alexander J.
    George, Michael W.
    Markevich, Alexander, V
    Besley, Elena
    Yang, Sihai
    Champness, Neil R.
    Schroder, Martin
    [J]. INORGANIC CHEMISTRY, 2020, 59 (21) : 15646 - 15658
  • [8] Metal-Organic Polyhedra as Building Blocks for Porous Extended Networks
    Khobotov-Bakishev, Akim
    Hernandez-Lopez, Laura
    von Baeckmann, Cornelia
    Albalad, Jorge
    Carne-Sanchez, Arnau
    Maspoch, Daniel
    [J]. ADVANCED SCIENCE, 2022, 9 (11)
  • [9] Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework
    Jihyun An
    Omar K. Farha
    Joseph T. Hupp
    Ehmke Pohl
    Joanne I. Yeh
    Nathaniel L. Rosi
    [J]. Nature Communications, 3
  • [10] Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework
    An, Jihyun
    Farha, Omar K.
    Hupp, Joseph T.
    Pohl, Ehmke
    Yeh, Joanne I.
    Rosi, Nathaniel L.
    [J]. NATURE COMMUNICATIONS, 2012, 3