Effects of Elevated CO2 on the Photosynthesis, Chlorophyll Fluorescence and Yield of Two Wheat Cultivars (Triticum aestivum L.) under Persistent Drought Stress

被引:7
|
作者
Yang, Qi [1 ]
Li, Ping [1 ,2 ]
Zhang, Dongsheng [1 ,2 ]
Lin, Wen [1 ,2 ]
Hao, Xingyu [1 ,2 ]
Zong, Yuzheng [1 ,2 ]
机构
[1] Shanxi Agr Univ, Coll Agr, Taigu 030801, Peoples R China
[2] Shanxi Agr Univ, Ministerial & Prov Co Innovat Ctr Endem Crops Prod, Taigu 030801, Peoples R China
基金
中国国家自然科学基金;
关键词
elevated [CO2; persistent drought; photosynthesis; yield; wheat; PHYSIOLOGICAL-RESPONSES; ATMOSPHERIC CO2; CARBON-DIOXIDE; GROWTH; CHLOROPLASTS; ASSIMILATION; MERR; O-3;
D O I
10.3390/su15021593
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The interactive effects of elevated [CO2] and drought on leaf photosynthesis, physiology and yield in wheat (Triticum aestivum L.) are not well understood. This study evaluated the effects of persistent drought stress (35-45% of field water capacity) and elevated CO2 (ambient concentration + 200 mu mol mol(-1)) on leaf photosynthesis, chlorophyll fluorescence, stress physiological indices, biomass, and grain weight (in g m(-2)) in two wheat cultivars (large-spike cultivar Z175 and multiple-spike cultivar Triumph) at the open-top chamber (OTC) experimental facility in North China. We found that elevated [CO2] enhanced the positive effects of drought on F-v/F-m and WUE but did not ameliorate the adverse effects of drought on P-N in the two cultivars. Moreover, as a large-spike cultivar, Z175 showed enhanced photosynthesis performance and sink capacity (spike number and kernel number per spike) compared with Triumph in the grain filling stage under elevated [CO2], which helped counteract the adverse effects of drought. In contrast, although Triumph had more tillers and spikes at the current [CO2] concentration, most of them were thin and had limited photosynthesis capacity. The photosynthesis capacity of leaves on the main shoot and the spike number did not significantly increase in Triumph under elevated [CO2]. Hence, elevated [CO2] mitigated drought-induced inhibition of grain weight in Z175 plants but not in Triumph plants under persistent drought stress.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The Alleviating Effect of Elevated CO2 on Heat Stress Susceptibility of Two Wheat (Triticum aestivum L.) Cultivars
    Shanmugam, S.
    Kjaer, K. H.
    Ottosen, C. -O.
    Rosenqvist, E.
    Sharma, D. Kumari
    Wollenweber, B.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2013, 199 (05) : 340 - 350
  • [2] Effects of water stress on growth and yield of spring wheat (Triticum aestivum L.) cultivars
    Abayomi, YA
    Wright, D
    TROPICAL AGRICULTURE, 1999, 76 (02): : 120 - 125
  • [3] Effects of Warming and Drought Stress on the Coupling of Photosynthesis and Transpiration in Winter Wheat (Triticum aestivum L.)
    Li, Qian
    Gao, Yang
    Hamani, Abdoul Kader Mounkaila
    Fu, Yuanyuan
    Liu, Junming
    Wang, Hongbo
    Wang, Xingpeng
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [4] MAPPING QTLS FOR YIELD AND YIELD COMPONENTS UNDER DROUGHT STRESS IN BREAD WHEAT (TRITICUM AESTIVUM L.)
    Fatima, S.
    Chaudhari, S. K.
    Akhtar, S.
    Amjad, M. S.
    Akbar, M.
    Iqbal, M. S.
    Arshad, M.
    Shehzad, T.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (04): : 4431 - 4453
  • [5] Chlorophyll fluorescence kinetics and response of wheat (Triticum aestivum L.) under high temperature stress
    Jain, Neelu
    Singh, G. P.
    Pandey, Rakesh
    Ramya, P.
    Singh, P. K.
    Nivedita
    Prabhu, K. V.
    INDIAN JOURNAL OF EXPERIMENTAL BIOLOGY, 2018, 56 (03) : 194 - 201
  • [6] Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.)
    Sanyukta Shukla
    Kalpana Singh
    Rajendra V. Patil
    Suhas Kadam
    Sudhakar Bharti
    Pratti Prasad
    Nagendra Kumar Singh
    Renu Khanna-Chopra
    Euphytica, 2015, 203 : 449 - 467
  • [7] Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.)
    Shukla, Sanyukta
    Singh, Kalpana
    Patil, Rajendra V.
    Kadam, Suhas
    Bharti, Sudhakar
    Prasad, Pratti
    Singh, Nagendra Kumar
    Khanna-Chopra, Renu
    EUPHYTICA, 2015, 203 (02) : 449 - 467
  • [8] Combined Effect of Drought Stress and Elevated Atmospheric CO2 Concentration on the Yield Parameters and Water Use Properties of Winter Wheat (Triticum aestivum L.) Genotypes
    Varga, B.
    Vida, G.
    Varga-Laszlo, E.
    Hoffmann, B.
    Veisz, O.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2017, 203 (03) : 192 - 205
  • [9] YIELD AND YIELD TRAITS OF DURUM WHEAT (Triticum durum desf.) AND BREAD WHEAT (Triticum aestivum L.) GENOTYPES UNDER DROUGHT STRESS
    Allahverdiyev, Tofig
    GENETIKA-BELGRADE, 2016, 48 (02): : 717 - 727
  • [10] The Effects of Salinity and Light on Photosynthesis, Respiration and Chlorophyll fluorescence in Salt-tolerant and Salt-sensitive Wheat (Triticum aestivum L.) Cultivars
    Kafi, M.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2009, 11 (05): : 535 - 547