Li4Ti5O12-Hard carbon composite anode for fast-charging Li-Ion batteries

被引:6
|
作者
Saneifar, Hamidreza [1 ]
Liu, Jian [1 ]
机构
[1] Univ British Columbia, Fac Appl Sci, Sch Engn, Kelowna, BC V1V 1V7, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Fast-Charging Li-Ion Batteries; Hard Carbon Composite Anode; LiNixMnyCo1-x-yO2; Cathode; specific energy improvement and Interfacial; Stability; HARD CARBON; PERFORMANCE; STORAGE; ADDITIVES;
D O I
10.1016/j.jelechem.2022.117100
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The fast charge of lithium-ion batteries (LIBs) needs anode and cathode materials operating at high current densities and thus require special consideration for the electrode materials. This work studies the effect of the loading ratio of Hard Carbon (HC) and Li4Ti5O12 (LTO) on the electrochemical behavior of fast-charging LIBs. The formation of LTO/HC composites is confirmed with structural characterizations and electronic con-ductivity measurement. Galvanostatic charge-discharge cycling testing shows that superior cycling stability and specific capacity are achieved for the LTO/HC composite electrode with 20 wt% HC (LTO-HC20). Electrochemical impedance spectroscopy study reveals the improved lithium diffusion coefficient of LTO-HC compared to LTO only. Post-mortem analysis suggests that the LTO-HC composite electrodes, with an opti-mized LTO to HC ratio, can effectively contribute to improved Li-ion storage and electronic conductivity and robust solid electrolyte interphase on the electrode surface. Finally, full cells consisting of the optimized anode (LTO-HC20) and cathode (NMC 333) are fabricated and evaluated. It is found that a full cell of NCM/LTO-HC20 exhibits capacity retention of 82% and 79% over 300 cycles and specific energy of 130 and 89 Wh kg-1 at 1C and 3C, respectively. Therefore, a specific ratio of HC in the LTO-HC composite anode can dramatically improve the battery performance and specific energy while reducing the cost.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Soccerene-like Li4Ti5O12/C as anode materials for fast-charging Li-ion batteries
    Fang, Wei
    Zhang, Lingling
    Dong, Enjie
    Yang, Lijie
    Zhang, Hongyuan
    Wan, Xin
    Wang, Yinghe
    Lou, Shuaifeng
    Che, Guangbo
    Yin, Geping
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 929
  • [2] Fe3O4/Graphene Composite Anode Material for Fast-Charging Li-Ion Batteries
    Staffolani, Antunes
    Darjazi, Hamideh
    Carbonari, Gilberto
    Maroni, Fabio
    Gabrielli, Serena
    Nobili, Francesco
    MOLECULES, 2021, 26 (14):
  • [3] Fast-Charging Li4Ti5O12 Anode Driven by Light
    Ma, Yuanyuan
    Shen, Yaxin
    Jeong, Heonjae
    Lipton, Jason
    Wang, Hang
    Maclean, Stephen A.
    Rohr, Jason A.
    Johnson, Christopher S.
    Taylor, Andre D.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (02)
  • [4] Conformal Pressure and Fast-Charging Li-Ion Batteries
    Cao, Chuntian
    Steinrueck, Hans-Georg
    Paul, Partha P.
    Dunlop, Alison R.
    Trask, Stephen E.
    Jansen, Andrew N.
    Kasse, Robert M.
    Thampy, Vivek
    Yusuf, Maha
    Weker, Johanna Nelson
    Shyam, Badri
    Subbaraman, Ram
    Davis, Kelly
    Johnston, Christina M.
    Takacs, Christopher J.
    Toney, Michael F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (04)
  • [5] Electrolyte Design for Fast-Charging Li-Ion Batteries
    Logan, E. R.
    Dahn, J. R.
    TRENDS IN CHEMISTRY, 2020, 2 (04): : 354 - 366
  • [6] Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries
    Julien, Christian M.
    Mauger, Alain
    MICROMACHINES, 2024, 15 (03)
  • [7] Bi Works as a Li Reservoir for Promoting the Fast-Charging Performance of Phosphorus Anode for Li-Ion Batteries
    Zhang, Shaojie
    Zhang, Yiming
    Zhang, Ziyi
    Wang, Huili
    Cao, Yu
    Zhang, Baoshan
    Liu, Xinyi
    Mao, Chong
    Han, Xinpeng
    Gong, Haochen
    Yang, Zhanxu
    Sun, Jie
    ADVANCED ENERGY MATERIALS, 2022, 12 (19)
  • [8] In-situ construction of dual-coated silicon/carbon composite anode for fast-charging Li-ion batteries
    Wu, Shijie
    Wu, Heng
    Kong, Xiangjian
    Li, Yuting
    Xu, Guobao
    Su, Jincang
    Huang, Jianyu
    Wang, Gang
    Ou, Xing
    CHEMICAL ENGINEERING JOURNAL, 2024, 502
  • [9] Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries
    Zhang, Lihui
    Xu, Yuxing
    Liu, Zhenfa
    Wei, Aijia
    Li, Wen
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2019, 38 (02): : 949 - 955
  • [10] Challenges and Strategies of Fast-Charging Li-Ion Batteries with a Focus on Li Plating
    Dong, Yongteng
    Chen, Yuanmao
    Zeng, Qinghui
    Feng, Jiayu
    Fang, Mingming
    Shi, Zhangqin
    Liu, Jijiang
    Sheng, Yeliang
    Yue, Xinyang
    Liang, Zheng
    ENERGY MATERIAL ADVANCES, 2024, 5