共 7 条
Comparison of Different Important Predictors and Models for Estimating Large-Scale Biomass of Rubber Plantations in Hainan Island, China
被引:5
|作者:
Li, Xin
[1
]
Wang, Xincheng
[1
,2
]
Gao, Yuanfeng
[1
,2
]
Wu, Jiuhao
[1
]
Cheng, Renxi
[1
]
Ren, Donghao
[1
]
Bao, Qing
[1
]
Yun, Ting
[1
]
Wu, Zhixiang
[2
]
Xie, Guishui
[2
]
Chen, Bangqian
[2
]
机构:
[1] Nanjing Forestry Univ, Coinnovat Ctr Sustainable Forestry Southern China, Nanjing, Peoples R China
[2] Chinese Acad Trop Agr Sci CATAS, Rubber Res Inst RRI, State Key Lab Incubat Base Cultivat & Physiol Trop, Hainan Danzhou Agro Ecosyst Natl Observat & Res St, Haikou 571101, Peoples R China
基金:
中国国家自然科学基金;
关键词:
biomass;
rubber plantations;
DBH;
model comparison;
REMOTE-SENSING DATA;
ABOVEGROUND BIOMASS;
ALOS-PALSAR;
TIME-SERIES;
LANDSAT TM;
STAND AGE;
FOREST;
AREA;
METAANALYSIS;
INFORMATION;
D O I:
10.3390/rs15133447
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Rubber (Hevea brasiliensis Muell.) plantations are among the most critical agricultural ecosystems in tropical regions, playing a vital role in regional carbon balance. Accurate large-scale biomass estimation for these plantations remains a challenging task due to the severe signal saturation problem. Recent advances in remote sensing big data, cloud platforms, and machine learning have facilitated the precise acquisition of key physiological variables, such as stand age (A) and canopy height (H), which are critical parameters for biomass estimation but have been underutilized in prior studies. Using Hainan Island-the second-largest rubber planting base in China-as a case study, we integrated extensive ground surveys, maps of stand age and canopy height, remote sensing indicators (RSIs), and geographical and climate indicators (ECIs) to ascertain the optimal method for estimating rubber plantation biomass. We compared different inputs and estimation approaches (direct and indirect) using the random forest algorithm and analyzed the spatiotemporal characteristics of rubber plantation biomass on Hainan Island. The results indicated that the traditional model (RSIs + ECIs) had low accuracy and significant estimation bias (R-2 = 0.24, RMSE = 38.36 mg/ha). The addition of either stand age or canopy height considerably enhance model accuracy (R-2 = 0.77, RMSE & AP; 21.12 mg/ha). Moreover, incorporating the DBH obtained through indirect inversion yielded even greater predictive accuracy (R-2 = 0.97, RMSE = 7.73 mg/ha), outperforming estimates derived from an allometric equation model input with the DBH (R-2 = 0.67, RMSE = 25.43 mg/ha). However, augmenting the model with stand age, canopy height, or their combination based on RSIs, ECIs, and DBH only marginally improved the accuracy. Consequently, it is not recommended in scenarios with limited data and computing resources. Employing the optimal model, we generated biomass maps of rubber plantations on Hainan Island for 2016 and 2020, revealing that the spatiotemporal distribution pattern of the biomass is closely associated with the establishment year of the rubber plantations. While average biomass in a few areas has undergone slight decreases, total biomass has exhibited significant growth, reaching 5.46 x 10(7) mg by the end of 2020, underscoring its considerable value as a carbon sink.
引用
收藏
页数:19
相关论文