Learning from Projection to Reconstruction: A Deep Learning Reconstruction Framework for Sparse-View Phase Contrast Computed Tomography via Dual-Domain Enhancement

被引:3
|
作者
Zhang, Changsheng [1 ]
Fu, Jian [1 ,2 ,3 ]
Zhao, Gang [1 ]
机构
[1] Beihang Univ, Sch Mech Engn & Automat, Beijing 100190, Peoples R China
[2] Beihang Univ, Jiangxi Res Inst, Nanchang 330224, Peoples R China
[3] Beihang Univ, Ningbo Inst Technol, Ningbo 315000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 10期
基金
中国国家自然科学基金;
关键词
phase contrast computed tomography; sparse-view sampling; dual domain; convolutional neural network; radon inversion layer;
D O I
10.3390/app13106051
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phase contrast computed tomography (PCCT) provides an effective non-destructive testing tool for weak absorption objects. Limited by the phase stepping principle and radiation dose requirement, sparse-view sampling is usually performed in PCCT, introducing severe artifacts in reconstruction. In this paper, we report a dual-domain (i.e., the projection sinogram domain and image domain) enhancement framework based on deep learning (DL) for PCCT with sparse-view projections. It consists of two convolutional neural networks (CNN) in dual domains and the phase contrast Radon inversion layer (PCRIL) to connect them. PCRIL can achieve PCCT reconstruction, and it allows the gradients to backpropagate from the image domain to the projection sinogram domain while training. Therefore, parameters of CNNs in dual domains are updated simultaneously. It could overcome the limitations that the enhancement in the image domain causes blurred images and the enhancement in the projection sinogram domain introduces unpredictable artifacts. Considering the grating-based PCCT as an example, the proposed framework is validated and demonstrated with experiments of the simulated datasets and experimental datasets. This work can generate high-quality PCCT images with given incomplete projections and has the potential to push the applications of PCCT techniques in the field of composite imaging and biomedical imaging.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An efficient dual-domain deep learning network for sparse-view CT reconstruction
    Sun, Chang
    Salimi, Yazdan
    Angeliki, Neroladaki
    Boudabbous, Sana
    Zaidi, Habib
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 256
  • [2] Hierarchical decomposed dual-domain deep learning for sparse-view CT reconstruction
    Han, Yoseob
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (08):
  • [3] Dual-domain sparse-view CT reconstruction with Transformers
    Shi, Changrong
    Xiao, Yongshun
    Chen, Zhiqiang
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 101 : 71 - 78
  • [4] Dual-Domain Reconstruction Network for Sparse-View CT
    Zhang, Yi
    Chen, Hu
    Xia, Wenjun
    Chen, Yang
    Liu, Baodong
    Liu, Yan
    Sun, Huaiqiang
    Zhou, Jiliu
    DEVELOPMENTS IN X-RAY TOMOGRAPHY XIII, 2021, 11840
  • [5] Dual-domain sparse-view CT reconstruction with Transformers
    Shi, Changrong
    Xiao, Yongshun
    Chen, Zhiqiang
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 101 : 1 - 7
  • [6] A Dual-Domain Diffusion Model for Sparse-View CT Reconstruction
    Yang, Chun
    Sheng, Dian
    Yang, Bo
    Zheng, Wenfeng
    Liu, Chao
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1279 - 1283
  • [7] DuDoTrans: Dual-Domain Transformer for Sparse-View CT Reconstruction
    Wang, Ce
    Shang, Kun
    Zhang, Haimiao
    Li, Qian
    Zhou, S. Kevin
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION (MLMIR 2022), 2022, 13587 : 84 - 94
  • [8] Dual-path deep learning reconstruction framework for propagation-based X-ray phase-contrast computed tomography with sparse-view projections
    Han, Shuo
    Zhao, Yuqing
    Li, Fangzhi
    Ji, Dongjiang
    Li, Yimin
    Zheng, Mengting
    Lv, Wenjuan
    Xin, Xiaohong
    Zhao, Xinyan
    Qi, Beining
    Hu, Chunhong
    OPTICS LETTERS, 2021, 46 (15) : 3552 - 3555
  • [9] Dual-Domain Neural Network for Sparse-View Photoacoustic Image Reconstruction
    Shen Kang
    Liu Songde
    Shi Junhui
    Tian Chao
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (05):
  • [10] Learning Projection Views for Sparse-View CT Reconstruction
    Yang, Liutao
    Ge, Rongjun
    Feng, Shichang
    Zhang, Daoqiang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2645 - 2653