Universum twin support vector machine with truncated pinball loss

被引:5
|
作者
Kumari, Anuradha [1 ]
Tanveer, M. [1 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Indore 453552, India
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
twin support vector machine; Electroencephalogram signal; Alzheimer's disease; Truncated loss; Pinball loss; Convex-concave procedure; CLASSIFICATION;
D O I
10.1016/j.engappai.2023.106427
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For classification problems, twin support vector machine with pinball loss (Pin-GTSVM) is noise insensitive and has better performance than twin support vector machine (TWSVM). However, it lacks sparsity in comparison to TWSVM. In this article, to maintain a trade-off between the noise insensitivity and sparsity of the model along with preserving the theoretical properties of pinball loss, we propose universum twin support vector machine with truncated pinball loss (Tpin-UTWSVM). The proposed Tpin-UTWSVM considers universum data which gives prior information about the distribution of the data, thus improves the generalization performance of the proposed model. Further, the proposed optimization problem is non-convex and non-differentiable which is solved by concave-convex procedure. We employed the SOR approach to train the proposed model effectively with minimum training time. We conducted numerical experiments on 19 UCI binary datasets with different noise levels to validate the noise insensitivity of the proposed Tpin-UTWSVM model. We also conducted numerical experiments for electroencephalogram (EEG) signal classification and Alzheimer's disease (AD) detection. The overall experimental outcomes and statistical tests demonstrate the superiority of the proposed Tpin-UTWSVM model in comparison to the baseline models. The source code for the proposed Tpin-UTWSVM is available at https://github.com/mtanveer1/Universum-twin-SVM-with-truncated-pinball-loss.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Twin-parametric margin support vector machine with truncated pinball loss
    Huiru Wang
    Yitian Xu
    Zhijian Zhou
    [J]. Neural Computing and Applications, 2021, 33 : 3781 - 3798
  • [2] Twin-parametric margin support vector machine with truncated pinball loss
    Wang, Huiru
    Xu, Yitian
    Zhou, Zhijian
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (08): : 3781 - 3798
  • [3] Support vector machine classifier with truncated pinball loss
    Shen, Xin
    Niu, Lingfeng
    Qi, Zhiquan
    Tian, Yingjie
    [J]. PATTERN RECOGNITION, 2017, 68 : 199 - 210
  • [4] EEG signal classification via pinball universum twin support vector machine
    M. A. Ganaie
    M. Tanveer
    Jatin Jangir
    [J]. Annals of Operations Research, 2023, 328 : 451 - 492
  • [5] EEG signal classification via pinball universum twin support vector machine
    Ganaie, M. A.
    Tanveer, M.
    Jangir, Jatin
    [J]. ANNALS OF OPERATIONS RESEARCH, 2023, 328 (01) : 451 - 492
  • [6] Smooth twin bounded support vector machine with pinball loss
    Kai Li
    Zhen Lv
    [J]. Applied Intelligence, 2021, 51 : 5489 - 5505
  • [7] Smooth twin bounded support vector machine with pinball loss
    Li, Kai
    Lv, Zhen
    [J]. APPLIED INTELLIGENCE, 2021, 51 (08) : 5489 - 5505
  • [8] General twin support vector machine with pinball loss function
    Tanveer, M.
    Sharma, A.
    Suganthan, P. N.
    [J]. INFORMATION SCIENCES, 2019, 494 : 311 - 327
  • [9] Twin Bounded Support Vector Machine with Capped Pinball Loss
    Wang, Huiru
    Hong, Xiaoqing
    Zhang, Siyuan
    [J]. COGNITIVE COMPUTATION, 2024, 16 (05) : 2185 - 2205
  • [10] A Novel Twin Support-Vector Machine With Pinball Loss
    Xu, Yitian
    Yang, Zhiji
    Pan, Xianli
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (02) : 359 - 370