Extraction and application of super-smooth cubic B-splines over triangulations
被引:2
|
作者:
Groselj, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
Groselj, Jan
[1
,2
]
Speleers, Hendrik
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dept Math, Via Ric Sci 1, I-00133 Rome, ItalyUniv Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
Speleers, Hendrik
[3
]
机构:
[1] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[2] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Roma Tor Vergata, Dept Math, Via Ric Sci 1, I-00133 Rome, Italy
Triangular finite elements;
C 1 cubic splines;
B -spline basis;
Super;
-smoothness;
ISOGEOMETRIC ANALYSIS;
N-WIDTHS;
CONSTRUCTION;
MESHES;
SPACES;
D O I:
10.1016/j.cagd.2023.102194
中图分类号:
TP31 [计算机软件];
学科分类号:
081202 ;
0835 ;
摘要:
The space of C1 cubic Clough-Tocher splines is a classical finite element approximation space over triangulations for solving partial differential equations. However, for such a space there is no B-spline basis available, which is a preferred choice in computer aided geometric design and isogeometric analysis. A B-spline basis is a locally supported basis that forms a convex partition of unity. In this paper, we explore several alternative C1 cubic spline spaces over triangulations equipped with a B-spline basis. They are defined over a Powell-Sabin refined triangulation and present different types of C2 super-smoothness. The super-smooth B-splines are obtained through an extraction process, i.e., they are expressed in terms of less smooth basis functions. These alternative spline spaces maintain the same optimal approximation power as Clough-Tocher splines. This is illustrated with a selection of numerical examples in the context of least squares approximation and finite element approximation for second and fourth order boundary value problems.(c) 2023 Elsevier B.V. All rights reserved.
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
Groselj, Jan
Speleers, Hendrik
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dept Math, Via Ric Sci 1, I-00133 Rome, ItalyUniv Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia