Dilation operators in Besov spaces over local fields

被引:2
|
作者
Ashraf, Salman [1 ]
Jahan, Qaiser [1 ]
机构
[1] Indian Inst Technol Mandi, Sch Math & Stat Sci, Kamand 175005, Himachal Prades, India
关键词
Local fields; Besov spaces; Dilation operators; HAUSDORFF OPERATOR;
D O I
10.1007/s43036-023-00255-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a dilation operator on Besov spaces B-r,t(s)(K)over local fields and estimate an operator norm on such a field for s > sigma(r )= max(1/r - 1, 0) which depends on the constant k unlike the case of Euclidean spaces. In Rn, it is independent of constant k, the constant appears for limiting case s = 0 and s = sigma(r). In local fields, the limiting case is still open.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Dilation operators in Besov spaces over local fields
    Salman Ashraf
    Qaiser Jahan
    Advances in Operator Theory, 2023, 8
  • [2] On Dilation Operators in Besov Spaces
    Schneider, Cornelia
    REVISTA MATEMATICA COMPLUTENSE, 2009, 22 (01): : 111 - 128
  • [3] Besov spaces and Herz spaces on local fields
    Zhu, Yueping
    Zheng, Weixing
    Science in China, Series A: Mathematics, Physics, Astronomy, 41 (10): : 6 - 1060
  • [4] Besov spaces and Herz spaces on local fields
    朱月萍
    郑维行
    Science China Mathematics, 1998, (10) : 1051 - 1060
  • [5] Besov spaces and Herz spaces on local fields
    Yueping Zhu
    Weixing Zheng
    Science in China Series A: Mathematics, 1998, 41 : 1051 - 1060
  • [6] Besov spaces and Herz spaces on local fields
    Zhu, YP
    Zheng, WX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (10): : 1051 - 1060
  • [7] Besov spaces and Herz spaces on local fields
    朱月萍
    郑维行
    ScienceinChina,SerA., 1998, Ser.A.1998 (10) : 1051 - 1060
  • [8] Local solvability for a class of linear operators in Besov and Holder spaces
    da Silva, Evandro Raimundo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (01) : 175 - 195
  • [9] Singular Integral Operators with Rough Kernel on Function Spaces Over Local Fields
    Salman Ashraf
    Qaiser Jahan
    Complex Analysis and Operator Theory, 2023, 17
  • [10] Singular Integral Operators with Rough Kernel on Function Spaces Over Local Fields
    Ashraf, Salman
    Jahan, Qaiser
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (07)