Expansions of generalized Thue-Morse numbers

被引:0
|
作者
Li, Yao-Qiang [1 ,2 ]
机构
[1] Sun Yat sen Univ, Sch Math, Guangzhou 510275, Peoples R China
[2] Jiaying Univ, Sch Math, Meizhou 514015, Peoples R China
关键词
Thue-Morse sequence; Thue-Morse number; Unique expansion; Greedy expansion; Lazy expansion; Quasi-greedy expansion; Quasi-lazy expansion; Komornik-Loreti constant; UNIQUE EXPANSIONS; HAUSDORFF DIMENSION; BETA-EXPANSIONS; RAREFIED SUMS; CONSTANT; SETS;
D O I
10.1016/j.aam.2022.102456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce generalized Thue-Morse numbers of the form pi(beta)(theta) := Sigma(infinity)(n=1)theta(n)/beta(n) where beta is an element of (1, m+1] with m is an element of N and theta=(theta(n))(n >= 1) is an element of {0, 1, ... , m}(N) is a generalized Thue-Morse sequence previously studied by many authors in different terms. This is a natural generalization of the classical Thue-Morse number Sigma(infinity)(n=1) t(n)/2(n) where (t(n))(n >= 0) is the well-known Thue-Morse sequence 01101001 ... . We study when theta would be the unique, greedy, lazy, quasi-greedy and quasi-lazy beta-expansions of pi(beta)(theta), and generalize a result given by Kong and Li in 2015. In particular we deduce that the shifted Thue-Morse sequence (t(n))(n >= 1) is the unique beta-expansion of Sigma(infinity)(n=1)t(n)/beta(n) if and only if it is the greedy expansion, if and only if it is the lazy expansion, if and only if it is the quasi-greedy expansion, if and only if it is the quasi-lazy expansion, and if and only if beta is no less than the Komornik-Loreti constant. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Transcendence of Digital Expansions Generated by a Generalized Thue-Morse Sequence
    Miyanohara, Eiji
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (09)
  • [2] GENERALIZED THUE-MORSE SEQUENCES
    SEEBOLD, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 199 : 402 - 411
  • [3] ON GENERALIZED WORDS OF THUE-MORSE
    CERNY, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1984, 176 : 232 - 239
  • [4] Univoque numbers and an avatar of Thue-Morse
    Allouche, Jean-Paul
    Frougny, Christiane
    ACTA ARITHMETICA, 2009, 136 (04) : 319 - 329
  • [5] ON GENERALIZED THUE-MORSE FUNCTIONS AND THEIR VALUES
    Badziahin, Dzmitry
    Zorin, Evgeniy
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 108 (02) : 177 - 201
  • [6] Generalized Thue-Morse sequences of squares
    Michael Drmota
    Johannes F. Morgenbesser
    Israel Journal of Mathematics, 2012, 190 : 157 - 193
  • [7] Generalized Thue-Morse sequences of squares
    Drmota, Michael
    Morgenbesser, Johannes F.
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 190 (01) : 157 - 193
  • [8] On the rational approximation to Thue-Morse rational numbers
    Bugeaud, Yann
    Han, Guo-Niu
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2024, 151 : 123 - 136
  • [9] On Arithmetic Progressions in the Generalized Thue-Morse Word
    Parshina, Olga G.
    COMBINATORICS ON WORDS, WORDS 2015, 2015, 9304 : 191 - 196
  • [10] FACTOR FREQUENCIES IN GENERALIZED THUE-MORSE WORDS
    Balkova, L'ubomira
    KYBERNETIKA, 2012, 48 (03) : 371 - 385