Computational Optimal Transport and Filtering on Riemannian Manifolds

被引:1
|
作者
Grange, Daniel [1 ]
Al-Jarrah, Mohammad [2 ]
Baptista, Ricardo [3 ]
Taghvaei, Amirhossein [2 ]
Georgiou, Tryphon T. [4 ]
Phillips, Sean [5 ]
Tannenbaum, Allen [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Bellmore, NY 11794 USA
[2] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[3] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[4] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[5] Air Force Res Lab, Space Vehicles Directorate, Albuquerque, NM 87116 USA
来源
关键词
Optimal transportation; optimal control; nonlinear filtering; Riemannian manifolds; OPTIMAL MASS-TRANSPORT; POLAR FACTORIZATION; ATTITUDE;
D O I
10.1109/LCSYS.2023.3331834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter we extend recent developments in computational optimal transport to the setting of Riemannian manifolds. In particular, we show how to learn optimal transport maps from samples that relate probability distributions defined on manifolds. Specializing these maps for sampling conditional probability distributions provides an ensemble approach for solving nonlinear filtering problems defined on such geometries. The proposed computational methodology is illustrated with examples of transport and nonlinear filtering on Lie groups, including the circle S1, the special Euclidean group SE(2), and the special orthogonal group SO(3).
引用
收藏
页码:3495 / 3500
页数:6
相关论文
共 50 条
  • [1] MULTI-MARGINAL OPTIMAL TRANSPORT ON RIEMANNIAN MANIFOLDS
    Kim, Young-Heon
    Pass, Brendan
    AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (04) : 1045 - 1060
  • [2] Particle filtering on Riemannian manifolds
    Snoussi, Hichem
    Mohammad-Djafari, Ali
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2006, 872 : 219 - +
  • [3] Nonlinear Filtering in Riemannian Manifolds
    Ng, S. K.
    Caines, P. E.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1985, 2 (01) : 25 - 36
  • [4] Unscented Kalman Filtering on Riemannian Manifolds
    Søren Hauberg
    François Lauze
    Kim Steenstrup Pedersen
    Journal of Mathematical Imaging and Vision, 2013, 46 : 103 - 120
  • [5] Unscented Kalman Filtering on Riemannian Manifolds
    Hauberg, Soren
    Lauze, Francois
    Pedersen, Kim Steenstrup
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2013, 46 (01) : 103 - 120
  • [6] Counterexamples to Continuity of Optimal Transport Maps on Positively Curved Riemannian Manifolds
    Kim, Young-Heon
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [7] NECESSARY AND SUFFICIENT CONDITIONS FOR CONTINUITY OF OPTIMAL TRANSPORT MAPS ON RIEMANNIAN MANIFOLDS
    Figalli, Alessio
    Rifford, Ludovic
    Villani, Cedric
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) : 855 - 876
  • [8] Optimal Design of Experiments on Riemannian Manifolds
    Li, Hang
    Del Castillo, Enrique
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 875 - 886
  • [9] Optimal control of geodesics in Riemannian Manifolds
    Rozsnyo, R
    Semmler, KD
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 327 - 330
  • [10] Optimal control on Riemannian manifolds by interpolation
    Giambò, R
    Giannoni, F
    Piccione, P
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2004, 16 (04) : 278 - 296