Proximal causal inference without uniqueness assumptions

被引:1
|
作者
Zhang, Jeffrey [1 ]
Li, Wei [2 ,3 ]
Miao, Wang [4 ]
Tchetgen, Eric Tchetgen [1 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA 19104 USA
[2] Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
[3] Renmin Univ China, Sch Stat, Beijing, Peoples R China
[4] Peking Univ, Dept Probabil & Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Proximal causal inference; root n-estimability; MODELS;
D O I
10.1016/j.spl.2023.109836
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider identification and inference about a counterfactual outcome mean when there is unmeasured confounding using tools from proximal causal inference (Miao et al., 2018, Tchetgen Tchetgen et al., 2020). Proximal causal inference requires existence of solutions to at least one of two integral equations. We motivate the existence of solutions to the integral equations from proximal causal inference by demonstrating that, assuming the existence of a solution to one of the integral equations, root n-estimability of a linear functional (such as its mean) of that solution requires the existence of a solution to the other integral equation. Solutions to the integral equations may not be unique, which complicates estimation and inference. We construct a consistent estimator for the solution set for one of the integral equations and then adapt the theory of extremum estimators to find from the estimated set a consistent estimator for a uniquely defined solution. A debiased estimator for the counterfactual mean is shown to be root -n consistent, regular, and asymptotically semiparametrically locally efficient under additional regularity conditions. (C) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Proximal causal inference without uniqueness assumptions (vol 198,109836, 2023)
    Zhang, Jeffrey
    Li, Wei
    Miao, Wang
    Tchetgen, Eric Tchetgen
    STATISTICS & PROBABILITY LETTERS, 2024, 208
  • [2] Causal assumptions and causal inference in ecological experiments
    Kimmel, Kaitlin
    Dee, Laura E.
    Avolio, Meghan L.
    Ferraro, Paul J.
    TRENDS IN ECOLOGY & EVOLUTION, 2021, 36 (12) : 1141 - 1152
  • [3] Assumptions, causal inference, and the goals of QCA
    Jason Seawright
    Studies in Comparative International Development, 2005, 40 : 39 - 42
  • [5] Selective Ignorability Assumptions in Causal Inference
    Joffe, Marshall M.
    Yang, Wei Peter
    Feldman, Harold I.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02):
  • [6] An Introduction to Proximal Causal Inference
    Tchetgen, Eric J. Tchetgen
    Ying, Andrew
    Cui, Yifan
    Shi, Xu
    Miao, Wang
    STATISTICAL SCIENCE, 2024, 39 (03) : 375 - 390
  • [7] Semiparametric Proximal Causal Inference
    Cui, Yifan
    Pu, Hongming
    Shi, Xu
    Miao, Wang
    Tchetgen, Eric Tchetgen
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1348 - 1359
  • [8] Disentangling causality: assumptions in causal discovery and inference
    Vonk, Maarten C.
    Malekovic, Ninoslav
    Back, Thomas
    Kononova, Anna V.
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 10613 - 10649
  • [9] Disentangling causality: assumptions in causal discovery and inference
    Maarten C. Vonk
    Ninoslav Malekovic
    Thomas Bäck
    Anna V. Kononova
    Artificial Intelligence Review, 2023, 56 : 10613 - 10649
  • [10] INTRODUCING PROXIMAL CAUSAL INFERENCE FOR EPIDEMIOLOGISTS
    Zivich, Paul N.
    Cole, Stephen R.
    Edwards, Jessie K.
    Mulholland, Grace E.
    Shook-Sa, Bonnie E.
    Tchetgen Tchetgen, Eric J.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2023, 192 (07) : 1224 - 1227