Qingda granule alleviates cerebral ischemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 signaling in microglia

被引:2
|
作者
Cai, Qiaoyan [1 ,2 ,3 ]
Zhao, Chunyu [1 ]
Xu, Yaoyao [1 ]
Lin, Haowei [1 ]
Jia, Beibei [1 ]
Huang, Bin [1 ,2 ]
Lin, Shan [1 ,2 ]
Chen, Daxin [1 ,2 ]
Jia, Peizhi [1 ]
Wang, Meiling [1 ]
Lin, Wei [4 ]
Zhang, Ling [1 ,2 ,3 ,5 ]
Chu, Jianfeng [1 ,2 ,3 ,5 ]
Peng, Jun [1 ,2 ,3 ,5 ]
机构
[1] Fujian Univ Tradit Chinese Med, Acad Integrat Med, Fuzhou 350122, Fujian, Peoples R China
[2] Fujian Univ Tradit Chinese Med, Fujian Key Lab Integrat Med Geriatr, Fuzhou 350122, Fujian, Peoples R China
[3] Fujian Collaborat Innovat Ctr Integrat Med Prevent, Fuzhou 350122, Fujian, Peoples R China
[4] Fujian Univ Tradit Chinese Med, Innovat & Transformat Ctr, Fuzhou 350122, Fujian, Peoples R China
[5] Qiuyang Rd, Fuzhou 350122, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Qingda granule; Ischemia stroke; Microglia; Network pharmacology; TLR4/NF-kappa B; NLRP3; NF-KB; INFLAMMATION; ISCHEMIA; ACTIVATION; MECHANISMS; STROKE;
D O I
10.1016/j.jep.2024.117712
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethnopharmacological relevance: Qingda granule (QDG) is effective for treating hypertension and neuronal damage after cerebral ischemia/reperfusion. However, the anti-neuroinflammatory effect of QDG on injury due to cerebral ischemia/reperfusion is unclear. Aim of the study: The objective was to evaluate the effectiveness and action of QDG in treating neuroinflammation resulting from cerebral ischemia/reperfusion-induced injury. Materials and methods: Network pharmacology was used to predict targets and pathways of QDG. An in vivo rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) as well as an in vitro model of LPS-stimulated BV -2 cells were established. Magnetic resonance imaging (MRI) was used to quantify the area of cerebral infarction, with morphological changes in the brain being assessed by histology. Immunohistochemistry (IHC) was used to assess levels of the microglial marker IBA -1 in brain tissue. Bioplex analysis was used to measure TNF-alpha, IL-1 beta, IL -6, and MCP -1 in sera and in BV -2 cell culture supernatants. Simultaneously, mRNA levels of these factors were examined using RT-qPCR analysis. Proteins of the TLR4/NF-kappa B/NLRP3 axis were examined using IHC in vivo and Western blot in vitro, respectively. While NF-kappa B translocation was assessed using immunofluorescence. Results: The core targets of QDG included TNF, NF-kappa B1, MAPK1, MAPK3, JUN, and TLR4. QDG suppressed inflammation via modulation of TLR4/NF-kappa B signaling. In addition, our in vivo experiments using MCAO/R rats demonstrated the therapeutic effect of QDG in reducing brain tissue infarction, improving neurological function, and ameliorating cerebral histopathological damage. Furthermore, QDG reduced the levels of TNF-alpha, IL-1 beta, IL -6, and MCP -1 in both sera from MCAO/R rats and supernatants from LPS-induced BV -2 cells, along with a reduction in the expression of the microglia biomarker IBA -1, as well as that of TLR4, MyD88, p-IKK, p-I kappa B alpha, p -P65, and NLRP3 in MCAO/R rats. In LPS-treated BV -2 cells, QDG downregulated the expression of proinflammatory factors and TLR4/NF-kappa B/NLRP3 signaling -related proteins. Additionally, QDG reduced translocation of NF-kappa B to the nucleus in both brains of MCAO/R rats and LPS-induced BV -2 cells. Moreover, the combined treatment of the TLR4 inhibitor TAK242 and QDG significantly reduced the levels of p -P65, NLRP3, and IL -6. Conclusions: QDG significantly suppressed neuroinflammation by inhibiting the TLR4/NF-kappa B/NLRP3 axis in microglia. This suggests potential for QDG in treating ischemia stroke.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Modified Citrus Pectin Alleviates Cerebral Ischemia/Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation via TLR4/NF-?B Signaling Pathway in Microglia
    Cui, Yu
    Zhang, Nan-Nan
    Wang, Dan
    Meng, Wei-Hong
    Chen, Hui-Sheng
    JOURNAL OF INFLAMMATION RESEARCH, 2022, 15 : 3369 - 3385
  • [2] Salidroside inhibits NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-ΚB signaling pathway
    Liu, Jie
    Ma, Wei
    Zang, Cheng-Hao
    Wang, Guo-Dong
    Zhang, Si-Jia
    Wu, Hong-Jie
    Zhu, Ke-Wei
    Xiang, Xiang-Lin
    Li, Chun-Yan
    Liu, Kuang-Pin
    Guo, Jian-Hui
    Li, Li-Yan
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (22)
  • [3] Piceatannol alleviates liver ischaemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 in hepatic macrophages
    Yao, Lei
    Cai, Haijian
    Fang, Qi
    Liu, Deng
    Zhan, Mengting
    Chen, Lijian
    Du, Jian
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2023, 960
  • [4] Morphine alleviates myocardial ischemia/reperfusion injury in rats by inhibiting TLR4/NF-κB signaling pathway
    Wang, Y.
    Wang, L.
    Li, J-H
    Zhao, H-W
    Zhang, F-Z
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (19) : 8616 - 8624
  • [5] Biochanin A attenuates myocardial ischemia/reperfusion injury through the TLR4/NF-κB/NLRP3 signaling pathway
    Bai, Yejun
    Li, Zhigang
    Liu, Weihao
    Gao, Dong
    Liu, Min
    Zhang, Peiying
    ACTA CIRURGICA BRASILEIRA, 2019, 34 (11)
  • [6] Meisoindigo Protects Against Focal Cerebral Ischemia-Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation and Regulating Microglia/Macrophage Polarization via TLR4/NF-κB Signaling Pathway
    Ye, Yingze
    Jin, Tong
    Zhang, Xu
    Zeng, Zhi
    Ye, Baixin
    Wang, Jinchen
    Zhong, Yi
    Xiong, Xiaoxing
    Gu, Lijuan
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2019, 13
  • [7] Eupafolin alleviates cerebral ischemia/reperfusion injury in rats via blocking the TLR4/NF-κB signaling pathway
    Chen, Xingwang
    Yao, Zhijun
    Peng, Xian
    Wu, Long
    Wu, Huachu
    Ou, Yuantong
    Lai, Jianbo
    MOLECULAR MEDICINE REPORTS, 2020, 22 (06) : 5135 - 5144
  • [8] Hugan Buzure Granule Alleviates Acute Kidney Injury in Mice by Inhibiting NLRP3/Caspase-1 Pathway and TLR4/NF-κB Pathway
    Ran, Chongwang
    Yu, Bing
    Yin, Hailong
    Yang, Yanfang
    Wu, Hezhen
    Yin, Qiang
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (11):
  • [9] The effect of focal cerebral ischemia-reperfusion injury on TLR4 and NF-κB signaling pathway
    Chen, Jing
    Yang, Chenli
    Xu, Xiang
    Yang, Yonglin
    Xu, Bo
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2018, 15 (01) : 897 - 903
  • [10] Suppression of TLR4/NF-κB Signaling Pathway Improves Cerebral Ischemia–Reperfusion Injury in Rats
    Hang Zhao
    Zhuo Chen
    Li-Juan Xie
    Gui-Feng Liu
    Molecular Neurobiology, 2018, 55 : 4311 - 4319