Few-Shot Object Detection via Classify-Free RPN

被引:0
|
作者
Yu, Songlin [1 ]
Yang, Zhiyu [1 ]
Zhang, Shengchuan [1 ]
Cao, Liujuan [1 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen 361005, Fujian, Peoples R China
关键词
Object detection; Few-shot object detection; RPN;
D O I
10.1007/978-981-99-8549-4_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The research community has shown great interest in few-shot object detection, which focuses on detecting novel objects with only a small number of annotated examples. Most of the works are based on the Faster R-CNN framework. However, due to the absence of annotated data for novel instances, models are prone to base class bias, which can result in misclassifying novel instances as background or base instances. Our analysis reveals that although the RPN is class-agnostic in form, the binary classification loss possesses class-awareness capabilities, which can lead to the base class bias issue. Therefore, we propose a simple yet effective classify-free RPN. We replace the binary classification loss of the RPN with Smooth L1 loss and adjust the ratio of positive and negative samples for computing the loss. This avoids treating anchors matched with novel instances as negative samples in loss calculation, thereby mitigating the base class bias issue. Without any additional computational cost or parameters, our method achieves significant improvements compared to other methods on the PASCAL VOC and MS-COCO benchmarks, establishing state-of-the-art performance.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 50 条
  • [1] FEW-SHOT OBJECT DETECTION WITH LOCAL CORRESPONDENCE RPN AND ATTENTIVE HEAD
    Han, Jian
    Li, Yali
    Wang, Shengjin
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3718 - 3722
  • [2] CRTED: Few-Shot Object Detection via Correlation-RPN and Transformer Encoder-Decoder
    Chen, Jinlong
    Xu, Kejian
    Ning, Yi
    Jiang, Lianyuan
    Xu, Zhi
    ELECTRONICS, 2024, 13 (10)
  • [3] Few-Shot Object Detection via Sample Processing
    Xu, Honghui
    Wang, Xinqing
    Shao, Faming
    Duan, Baoguo
    Zhang, Peng
    IEEE ACCESS, 2021, 9 (09): : 29207 - 29221
  • [4] Few-Shot Object Detection via Association and DIscrimination
    Cao, Yuhang
    Wang, Jiaqi
    Jin, Ying
    Wu, Tong
    Chen, Kai
    Liu, Ziwei
    Lin, Dahua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [5] Few-Shot Object Detection via Knowledge Transfer
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3564 - 3569
  • [6] Few-shot object detection via baby learning
    Vu, Anh-Khoa Nguyen
    Nguyen, Nhat-Duy
    Nguyen, Khanh-Duy
    Nguyen, Vinh-Tiep
    Ngo, Thanh Duc
    Do, Thanh-Toan
    Nguyen, Tam V.
    IMAGE AND VISION COMPUTING, 2022, 120
  • [7] Few-Shot Object Detection via Metric Learning
    Zhu Min
    Zhang Chongyang
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
  • [8] Few-shot Object Detection via Feature Reweighting
    Kang, Bingyi
    Liu, Zhuang
    Wang, Xin
    Yu, Fisher
    Feng, Jiashi
    Darrell, Trevor
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8419 - 8428
  • [9] Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
    Fan, Qi
    Zhuo, Wei
    Tang, Chi-Keung
    Tai, Yu-Wing
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4012 - 4021
  • [10] Few-Shot Object Detection: A Survey
    Antonelli, Simone
    Avola, Danilo
    Cinque, Luigi
    Crisostomi, Donato
    Foresti, Gian Luca
    Galasso, Fabio
    Marini, Marco Raoul
    Mecca, Alessio
    Pannone, Daniele
    ACM COMPUTING SURVEYS, 2022, 54 (11S)