THE FLOW-CURVATURE OF CURVES IN A GEOMETRIC SURFACE

被引:1
|
作者
Crasmareanu, Mircea [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2023年 / 38卷 / 04期
关键词
Two-dimensional Riemannian manifold; geodesic curvature; flow-frame; flow-curvature;
D O I
10.4134/CKMS.c230024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a fixed parametrization of a curve in an orientable two-dimensional Riemannian manifold, we introduce and investigate a new frame and curvature function. Due to the way of defining this new frame as being the time-dependent rotation in the tangent plane of the standard Frenet frame, both these new tools are called flow.
引用
收藏
页码:1261 / 1269
页数:9
相关论文
共 50 条
  • [1] THE FLOW-CURVATURE OF PLANE PARAMETRIZED CURVES
    Crasmareanu, Mircea
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2023, 72 (02): : 417 - 428
  • [2] Flow-selfdual curves in a geometric surface
    Crasmareanu, Mircea
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, (51): : 99 - 105
  • [3] Flow-curvature effect on linear Rayleigh-Taylor instability in magnetized plasmas
    Chakrabarti, N
    PHYSICS OF PLASMAS, 1999, 6 (05) : 1667 - 1669
  • [4] GEOMETRIC INEQUALITY FOR PLANE CURVES WITH RESTRICTED CURVATURE
    CHAKERIAN, GD
    JOHNSON, HH
    VOGT, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 57 (01) : 122 - 126
  • [5] Curvature estimation and curvature flow for digital curves
    Department of Applied Mathematics, National Chia-Yi University, Chia-Yi, Taiwan
    不详
    WSEAS Trans. Comput., 2006, 5 (804-809):
  • [6] The curvature and torsion of curves in a surface
    Yin S.
    Zheng D.
    Journal of Geometry, 2017, 108 (3) : 1085 - 1090
  • [7] AREA PRESERVING GEODESIC CURVATURE DRIVEN FLOW OF CLOSED CURVES ON A SURFACE
    Kolar, Miroslav
    Benes, Michal
    Sevcovic, Daniel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (10): : 3671 - 3689
  • [8] A GEOMETRIC INEQUALITY FOR THE TOTAL CURVATURE OF PLANE-CURVES
    BENEDETTI, R
    DEDO, M
    GEOMETRIAE DEDICATA, 1987, 22 (01) : 105 - 115
  • [9] Curvature of a geometric surface and curvature of gravity and magnetic anomalies
    Li, Xiong
    GEOPHYSICS, 2015, 80 (01) : G15 - G26
  • [10] Mean curvature flow and geometric inequalities
    Topping, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 503 : 47 - 61