Construction of New Hadamard Matrix Forms to Generate 4x4 and 8x8 Involutory MDS Matrices Over GF(2m) for Lightweight Cryptography

被引:0
|
作者
Kumar, Yogesh [1 ]
Mishra, P. R. [1 ]
Gaur, Atul [2 ]
Mittal, Gaurav [3 ]
机构
[1] DRDO Sci Anal Grp, Delhi 110054, India
[2] Univ Delhi, Dept Math, Delhi 110007, India
[3] DRDO Joint Cipher Bur, Delhi 110054, India
关键词
Finite field; Branch number; Diffusion; MDS matrices; Cryptography;
D O I
10.14429/dsj.74.18824
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we present the construction of two Hadamard matrix forms over GF(2m) to generate 4x4 and 8x8 involutory MDS (IMDS) matrices. The first form provides a straightforward way to generate 4x4 IMDS matrices, while the second is an efficient way to generate 8x8 IMDS matrices using a hybrid (combination of search-based methods and direct construction) approach. In addition, we propose an algorithm for computing the branch number of any non-singular matrix over GF(2m) and improve its computational complexity for Hadamard matrices. Using this algorithm and the proposed Hadamard matrix form, we obtain 2kx2k lightweight involutory and non-involutory Hadamard MDS matrices with low XOR counts for k=2,3. Finally, we carry out a comparative study based on the XOR count to demonstrate that MDS matrices created using our Hadamard matrix forms have lower XOR counts than MDS matrices available in the literature as of today.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 21 条
  • [1] CMOS 4x4 and 8x8 Butler Matrices
    Cetinoneri, Berke
    Atesal, Yusuf A.
    Kim, Jeong-Geun
    Rebeiz, Gabriel M.
    2010 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (MTT), 2010, : 69 - 72
  • [2] A systematic construction approach for all 4x4 involutory MDS matrices
    Kumar, Yogesh
    Mishra, P. R.
    Samanta, Susanta
    Gaur, Atul
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (05) : 4677 - 4697
  • [3] Construction of 4 x 4 Lightweight Low-Latency Involutory MDS Matrices
    Zhao, Zheng
    Liu, Qun
    Fan, Yanhong
    Wang, Meiqin
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY WORKSHOPS, PT II, ACNS 2024-AIBLOCK 2024, AIHWS 2024, AIOTS 2024, SCI 2024, AAC 2024, SIMLA 2024, LLE 2024, AND CIMSS 2024, 2024, 14587 : 119 - 140
  • [4] A new matrix form to generate all 3 x 3 involutory MDS matrices over F2m
    Guzel, Gulsum Gozde
    Sakalli, Muharrem Tolga
    Akleylek, Sedat
    Rijmen, Vincent
    Cengellenmis, Yasemin
    INFORMATION PROCESSING LETTERS, 2019, 147 : 61 - 68
  • [5] Design and Implementation of Single-Layer 4x4 and 8x8 Butler Matrices for Multibeam Antenna Arrays
    Adamidis, George A.
    Vardiambasis, Ioannis O.
    Ioannidou, Melina P.
    Kapetanakis, Theodoros N.
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2019, 2019
  • [6] Design of Fully Integrated 4x4 and 8x8 Butler Matrices in Microstrip/Slot Technology for Ultra Wideband Smart Antennas
    Bialkowski, Marek E.
    Tsai, Feng-Chi E.
    Su, Yu-Chuan
    Cheng, Kai-Hong
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 1056 - +
  • [7] A new hybrid method combining search and direct based construction ideas to generate all 4 x 4 involutory maximum distance separable (MDS) matrices over binary field extensions
    Tuncay, Gokhan
    Sakalli, Fatma Buyuksaracoglu
    Pehlivanoglu, Meltem Kurt
    Yilmazguc, Gulsum Gozde
    Akleylek, Sedat
    Sakalli, Muharrem Tolga
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [8] A new hybrid method combining search and direct based construction ideas to generate all 4 x 4 involutory maximum distance separable (MDS) matrices over binary field extensions
    Tuncay, Gokhan
    Sakalli, Fatma Buyuksaracoglu
    Pehlivanoglu, Meltem Kurt
    Yilmazguc, Gulsum Gozde
    Akleylek, Sedat
    Sakalli, Muharrem Tolga
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [10] NEW MULTIPLE PHASES OBTAINED BY INTERGROWTH OF M6X4O26 AND M8O21 LATTICES - OXIDES, K10(M8O21)2.M6X4O26
    CHOISNET, J
    HERVIEU, M
    GROULT, D
    RAVEAU, B
    MATERIALS RESEARCH BULLETIN, 1977, 12 (06) : 621 - 627