Bifunctional catalyst consisting of In-modified GaZrOx ternary solid solution oxide and SAPO-34 for efficiently converting CO2 into light olefins

被引:2
|
作者
Liu, Shike [1 ,2 ,3 ]
Liu, Fei [1 ,2 ,3 ]
Yao, Mengqin [1 ,2 ,3 ]
Ma, Jun [1 ,2 ,3 ]
Geng, Shuo [1 ,2 ,3 ]
Cao, Jianxin [1 ,2 ,3 ]
机构
[1] Guizhou Univ, Sch Chem & Chem Engn, Dept Chem Engn, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Key Lab Green Chem & Clean Energy Technol, Guiyang 550025, Guizhou, Peoples R China
[3] Guizhou Univ, Engn Res Ctr Efficient Utilizat Ind Waste, Guiyang 550025, Guizhou, Peoples R China
关键词
CO; 2; hydrogenation; Light olefins; Bifunctional catalyst; Ternary metal oxides; Indium promotes; HIGHLY SELECTIVE CONVERSION; WATER-GAS SHIFT; CARBON-DIOXIDE; HYDROGENATION; METHANOL; SURFACE;
D O I
10.1016/j.apcata.2023.119464
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Converting CO2 into light olefins (C2=-C4=) using oxide-zeolite bifunctional catalyst is a new strategy for producing light olefins. Herein, a series of bifunctional catalysts comprising In-doped GaZrOx oxides and SAPO-34 molecular sieves for CO2 hydrogenation to light olefins are reported, and their catalytic mechanisms are investigated using in situ spectroscopy. After optimizing the In doping amount, oxide calcination temperature, oxide coupling mode with SAPO-34, and reaction conditions, the bifunctional catalysts achieved 82.8% C2=-C4= selectivity, 24% CO2 conversion, and up to 10.1% C2=-C4= yield. Furthermore, no considerable deactivation was observed after 100 h of the reaction. Various characterization and experimental results indicate that adding In to GaZrOx promotes oxygen-vacancy generation and enhances the adsorption activation of CO2 and H2, thereby promoting the formation of formate (HCOO*) and methoxy (CH3O*) intermediates and improving the catalytic performance of the C2=-C4= synthesis from CO2.
引用
收藏
页数:9
相关论文
共 46 条
  • [1] Zn promoted GaZrOx Ternary Solid Solution Oxide Combined with SAPO-34 Effectively Converts CO2 to Light Olefins with Low CO Selectivity
    Liu, Shike
    Yang, Kun
    Ren, Qixia
    Liu, Fei
    Yao, Mengqin
    Ma, Jun
    Geng, Shuo
    Cao, Jianxin
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (39)
  • [2] Origin of the High Performance of GaZrOx/SAPO-34 Bifunctional OXZEO Catalyst for the Methanol-Mediated CO Hydrogenation to Light Olefins
    Salichon, Antoine
    Checa, Ruben
    Afanasiev, Pavel
    Loridant, Stephane
    CHEMCATCHEM, 2025,
  • [3] FeZnK/SAPO-34 Catalyst for Efficient Conversion of CO2 to Light Olefins
    Liu, Qiang
    Ding, Jie
    Wang, Ruonan
    Zhong, Qin
    CATALYSIS LETTERS, 2023, 153 (01) : 54 - 61
  • [4] FeZnK/SAPO-34 Catalyst for Efficient Conversion of CO2 to Light Olefins
    Qiang Liu
    Jie Ding
    Ruonan Wang
    Qin Zhong
    Catalysis Letters, 2023, 153 : 54 - 61
  • [5] Boosting Conversion of CO2 to Light Olefins over MgO-Promoted ZnZrO/SAPO-34 Bifunctional Catalyst
    Zhang, Lizhi
    Cao, Zhihua
    Gao, Ziliang
    Liu, Wenming
    Mao, Yiru
    Li, Miao
    Peng, Honggen
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (23) : 9123 - 9133
  • [6] CO2 hydrogenation to light olefins over highly active and selective Ga-Zr/SAPO-34 bifunctional catalyst
    Wang, Qian
    Xing, Mingqin
    Wang, Liping
    Gong, Zhiyuan
    Nawaz, Muhammad Asif
    Blay-Roger, Ruben
    Ramirez-Reina, T.
    Li, Zhong
    Meng, Fanhui
    MOLECULAR CATALYSIS, 2024, 569
  • [7] Design and preparation of CuZnTiO2/SAPO-34 bifunctional catalyst and its catalytic performance in CO2 hydrogenation to light olefins
    Chen, Jingyu
    Zhang, Jianhong
    Sheng, Hao
    Wu, Dakai
    Gao, Xinhua
    Ma, Qingxiang
    Zhang, Jianli
    Fan, Subing
    Zhao, Tiansheng
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39 (02): : 567 - 576
  • [8] Tandem Catalysis for Hydrogenation of CO and CO2 to Lower Olefins with Bifunctional Catalysts Composed of Spinel Oxide and SAPO-34
    Liu, Xiaoliang
    Wang, Mengheng
    Yin, Haoren
    Hu, Jingting
    Cheng, Kang
    Kang, Jincan
    Zhang, Qinghong
    Wang, Ye
    ACS CATALYSIS, 2020, 10 (15) : 8303 - 8314
  • [9] Electronic interaction promoting CO2 hydrogenation to light olefins over ZnZrOx/SAPO-34 catalyst
    Zhao, Yongjie
    Shi, Peixiang
    Wang, Xiaoyue
    Guo, Xiaohong
    Yao, Ruwei
    Li, Yanchun
    Jia, Qian
    Ban, Hongyan
    Li, Lei
    Li, Congming
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [10] Boosting CO2 hydrogenation performance for light olefin synthesis over GaZrOx combined with SAPO-34
    Zhang, Peng
    Ma, Lixuan
    Meng, Fanhui
    Wang, Lina
    Zhang, Riguang
    Yang, Guinan
    Li, Zhong
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 305