Progenitor-derived glia are required for spinal cord regeneration in zebrafish

被引:3
|
作者
Zhou, Lili [1 ,2 ]
McAdow, Anthony R. [1 ,2 ]
Yamada, Hunter [1 ,2 ]
Burris, Brooke [1 ,2 ]
Shaw, Dana Klatt [1 ,2 ]
Oonk, Kelsey [3 ]
Poss, Kenneth D. [2 ,3 ]
Mokalled, Mayssa H. [1 ,2 ]
机构
[1] Washington Univ, Sch Med, Dept Dev Biol, St Louis, MO 63110 USA
[2] Washington Univ, Ctr Regenerat Med, Sch Med, St Louis, MO 63110 USA
[3] Duke Univ, Duke Regenerat Ctr, Med Ctr, Dept Cell Biol, Durham, NC 27710 USA
来源
DEVELOPMENT | 2023年 / 150卷 / 10期
基金
美国国家卫生研究院;
关键词
Glia; Neural repair; Regeneration; Spinal cord injury; Zebrafish; GROWTH; TRANSECTION; LESIONS; INJURY; AXONS; SCAR;
D O I
10.1242/dev.201162
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unlike mammals, adult zebrafish undergo spontaneous recovery after major spinal cord injury. Whereas reactive gliosis presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish elicit pro-regenerative bridging functions after injury. Here, we perform genetic lineage tracing, assessment of regulatory sequences and inducible cell ablation to define mechanisms that direct the molecular and cellular responses of glial cells after spinal cord injury in adult zebrafish. Using a newly generated CreERT2 transgenic line, we show that the cells directing expression of the bridging glial marker ctgfa give rise to regenerating glia after injury, with negligible contribution to either neuronal or oligodendrocyte lineages. A 1 kb sequence upstream of the ctgfa gene was sufficient to direct expression in early bridging glia after injury. Finally, ablation of ctgfa-expressing cells using a transgenic nitroreductase strategy impaired glial bridging and recovery of swim behavior after injury. This study identifies key regulatory features, cellular progeny, and requirements of glial cells during innate spinal cord regeneration.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Differential gene expression profile between cord blood progenitor-derived and adult progenitor-derived human mast cells
    Inomata, N
    Tomita, H
    Ikezawa, Z
    Saito, H
    IMMUNOLOGY LETTERS, 2005, 98 (02) : 265 - 271
  • [2] Spatiotemporal contribution of neuromesodermal progenitor-derived neural cells in the elongation of developing mouse spinal cord
    Shaker, Mohammed R.
    Lee, Ju-Hyun
    Kim, Kyung Hyun
    Ban, Saeli
    Kim, Veronica Jihyun
    Kim, Joo Yeon
    Lee, Ji Yeoun
    Sun, Woong
    LIFE SCIENCES, 2021, 282
  • [3] Axonal regeneration in zebrafish spinal cord
    Ghosh, Sukla
    Hui, Subhra Prakash
    REGENERATION, 2018, 5 (01): : 43 - 60
  • [4] SPINAL CORD REGENERATION IN DEVELOPING ZEBRAFISH
    FAGAN, L
    AMERICAN ZOOLOGIST, 1969, 9 (04): : 1123 - &
  • [5] Locomotion dependent neuron-glia interactions control neurogenesis and regeneration in the adult zebrafish spinal cord
    Chang, Weipang
    Pedroni, Andrea
    Bertuzzi, Maria
    Kizil, Caghan
    Simon, Andras
    Ampatzis, Konstantinos
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] Locomotion dependent neuron-glia interactions control neurogenesis and regeneration in the adult zebrafish spinal cord
    Weipang Chang
    Andrea Pedroni
    Maria Bertuzzi
    Caghan Kizil
    András Simon
    Konstantinos Ampatzis
    Nature Communications, 12
  • [7] Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila
    Cordero, Julia B.
    Stefanatos, Rhoda K.
    Scopelliti, Alessandro
    Vidal, Marcos
    Sansom, Owen J.
    EMBO JOURNAL, 2012, 31 (19): : 3901 - 3917
  • [8] FGF binding protein 3 is required for spinal cord motor neuron development and regeneration in zebrafish
    Xu, Guangmin
    Huang, Zigang
    Sheng, Jiajing
    Gao, Xiang
    Wang, Xin
    Garcia, Jason Q.
    Wei, Guanyun
    Liu, Dong
    Gong, Jie
    EXPERIMENTAL NEUROLOGY, 2022, 348
  • [9] Is a spinal cord required for Xenopus tail regeneration?
    Taniguchi, Yuka
    Watanabe, Kenji
    Motii, Makoto
    ZOOLOGICAL SCIENCE, 2004, 21 (12) : 1304 - 1304
  • [10] Building bridges, not walls: spinal cord regeneration in zebrafish
    Cigliola, Valentina
    Becker, Clayton J.
    Poss, Kenneth D.
    DISEASE MODELS & MECHANISMS, 2020, 13 (05)