Hamiltonicity of graphs perturbed by a random regular graph

被引:1
|
作者
Diaz, Alberto Espuny [1 ]
Girao, Antonio [2 ]
机构
[1] Tech Univ Ilmenau, Inst Math, Ilmenau, Germany
[2] Univ Oxford, Math Inst, Oxford, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Hamiltonicity; pancyclicity; randomly perturbed graphs; random regular graphs; RANDOM EDGES;
D O I
10.1002/rsa.21122
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study Hamiltonicity and pancyclicity in the graph obtained as the union of a deterministic n$$ n $$-vertex graph H$$ H $$ with delta(H)>=alpha n$$ \delta (H)\ge \alpha n $$ and a random d$$ d $$-regular graph G$$ G $$, for d is an element of{1,2}$$ d\in \left\{1,2\right\} $$. When G$$ G $$ is a random 2-regular graph, we prove that a.a.s. H?G$$ H\cup G $$ is pancyclic for all alpha is an element of(0,1]$$ \alpha \in \left(0,1\right] $$, and also extend our result to a range of sublinear degrees. When G$$ G $$ is a random 1-regular graph, we prove that a.a.s. H?G$$ H\cup G $$ is pancyclic for all alpha is an element of(2-1,1]$$ \alpha \in \left(\sqrt{2}-1,1\right] $$, and this result is best possible. Furthermore, we show that this bound on delta(H)$$ \delta (H) $$ is only needed when H$$ H $$ is "far" from containing a perfect matching, as otherwise we can show results analogous to those for random 2-regular graphs. Our proofs provide polynomial-time algorithms to find cycles of any length.
引用
收藏
页码:857 / 886
页数:30
相关论文
共 50 条
  • [1] Hamiltonicity of graphs perturbed by a random geometric graph
    Diaz, Alberto Espuny
    [J]. JOURNAL OF GRAPH THEORY, 2023, 103 (01) : 12 - 22
  • [2] Hamiltonicity in connected regular graphs
    Cranston, Daniel W.
    Suil, O.
    [J]. INFORMATION PROCESSING LETTERS, 2013, 113 (22-24) : 858 - 860
  • [3] Random regular graphs of non-constant degree: Connectivity and hamiltonicity
    Cooper, C
    Frieze, A
    Reed, B
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (03): : 249 - 261
  • [4] On the Hamiltonicity of random bipartite graphs
    Yilun Shang
    [J]. Indian Journal of Pure and Applied Mathematics, 2015, 46 : 163 - 173
  • [5] ON THE HAMILTONICITY OF RANDOM BIPARTITE GRAPHS
    Shang, Yilun
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (02): : 163 - 173
  • [6] Local Resilience and Hamiltonicity Maker-Breaker Games in Random Regular Graphs
    Ben-Shimon, Sonny
    Krivelevich, Michael
    Sudakov, Benny
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (02): : 173 - 211
  • [7] Robust Hamiltonicity of random directed graphs
    Ferber, Asaf
    Nenadov, Rajko
    Noever, Andreas
    Peter, Ueli
    Skoric, Nemanja
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 126 : 1 - 23
  • [8] On Hamiltonicity of regular graphs with bounded second neighborhoods
    Asratian, Armen S.
    Granholm, Jonas B.
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 316 : 75 - 86
  • [9] Hamiltonicity of regular 2-connected graphs
    Broersma, HJ
    vandenHeuvel, J
    Jackson, B
    Veldman, HJ
    [J]. JOURNAL OF GRAPH THEORY, 1996, 22 (02) : 105 - 124
  • [10] Hamiltonicity in random graphs is born resilient
    Montgomery, Richard
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 139 : 316 - 341