On the interactions of arbitrary shocks in isentropic drift-flux model of two-phase flows

被引:1
|
作者
Mondal, Rakib [1 ]
Minhajul [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, KK Birla Goa Campus, Sancoale 403726, Goa, India
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 01期
关键词
WAVE INTERACTIONS; RIEMANN SOLVER; WEAK SOLUTIONS;
D O I
10.1140/epjp/s13360-024-04884-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we consider the wave interactions for a 3x3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \times 3$$\end{document} system of conservation laws governing the isentropic drift-flux model of two-phase flows. Here, we express the elementary waves as a one-parameter family of curves. Further, we reduce the system of equations by taking the projection of these elementary wave curves into the phase plane using the properties of Riemann invariants. Consequently, we establish that the interactions of two shocks of the same family with arbitrary strengths produce a rarefaction wave of different families. Finally, we discuss the Riemann solution after the interactions.
引用
收藏
页数:11
相关论文
共 50 条