Effect of air entraining and pumice on properties of ultra-high performance lightweight concrete

被引:9
|
作者
Zeyad, Abdullah M. [1 ]
Amin, Mohamed [2 ]
Agwa, Ibrahim Saad [2 ]
机构
[1] Jazan Univ, Fac Engn, Civil Engn Dept, Jazan 45142, Saudi Arabia
[2] Suez Univ, Fac Technol & Educ, Civil & Architectural Construct Dept, Suez, Egypt
关键词
Air-entraining; Pumice; Aluminum powder; Lightweight concrete; Nano silica; Lighcrete; MICRO-STEEL FIBER; HIGH-STRENGTH; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; ENGINEERING PROPERTIES; NANO-SILICA; AGGREGATE; MICROSTRUCTURE; POLYPROPYLENE; PERMEABILITY;
D O I
10.1007/s43452-023-00823-3
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study focuses on developing the production of ultra-high-performance lightweight concrete (UHPLC) by combining pumice with an air-entraining agent. Air-entraining agents of aluminum powder (AP) and lightcrete (LC) were added in amounts of 0.1, 0.2, 0.3, 0.4, and 0.5% by weight of cement to create air bubbles. Crushed pumice has also been used as a partial sand replacement in proportions of 25% and 50% by volume, with or without the addition of AP or LC. To investigate the fresh, mechanical, and microstructural properties, seventeen UHPLC combinations were constructed. A slump flow diameter test was conducted to evaluate the characteristics of fresh UHPLC, and mechanical properties were evaluated by completing dry density, compressive strength, tensile strength, flexural strength, modulus of elasticity, and dry shrinkage tests. The effect of high temperatures of 20, 400, 600, and 800 degrees C on compressive strength was also investigated. The microstructure characteristics were analyzed using a scanning electron microscope. The research concluded that high-performance concrete with a compressive strength of 127.6 MPa and a dry density of 1970 kg/m3 could be produced after a 28-day age test. This was accomplished by including 0.1% LC by weight of cement and 25% pumice as a partial substitute for sand. The mixture with 50% pumice as a partial replacement for sand and the addition of 0.5% LC of the cement weight exhibited the least loss in compressive strength when subjected to high temperatures.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Effect of air entraining and pumice on properties of ultra-high performance lightweight concrete
    Abdullah M. Zeyad
    Mohamed Amin
    Ibrahim Saad Agwa
    Archives of Civil and Mechanical Engineering, 24
  • [2] Preparation and properties of ultra-high performance lightweight concrete
    Pan, Huimin
    Yan, Shuaijun
    Zhao, Qingxin
    Wang, Dongli
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (06) : 310 - 323
  • [3] Effect of Lightweight Aggregate on Workability and Mechanical Properties of Ultra-high Performance Concrete
    Zhang G.
    Wang Y.
    Ge J.
    Yang J.
    Wei Q.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2021, 24 (03): : 499 - 507
  • [4] Lightweight Aggregate in Ultra-high Performance Concrete
    Zhang G.
    Guo K.
    Cheng H.
    Ding Q.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2023, 26 (08): : 886 - 896and905
  • [5] Mechanical and Microstructural Properties of Ultra-High Performance Concrete with Lightweight Aggregates
    Alanazi, Hani
    Elalaoui, Oussama
    Adamu, Musa
    Alaswad, Saleh O.
    Ibrahim, Yasser E.
    Abadel, Aref A.
    Al Fuhaid, Abdulrahman Fahad
    BUILDINGS, 2022, 12 (11)
  • [6] Durability Properties of Ultra-High Performance Lightweight Concrete (UHPLC) with Expanded Glass
    Umbach, Cristin
    Wetzel, Alexander
    Middendorf, Bernhard
    MATERIALS, 2021, 14 (19)
  • [7] Effect of slag cement on the properties of ultra-high performance concrete
    Liu, Zhichao
    El-Tawil, Sherif
    Hansen, Will
    Wang, Fazhou
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 190 : 830 - 837
  • [8] Effect of temperature on mechanical properties of ultra-high performance concrete
    Banerji, Srishti
    Kodur, Venkatesh
    FIRE AND MATERIALS, 2022, 46 (01) : 287 - 301
  • [9] The mechanical property and microstructure of ultra-high performance lightweight concrete
    Wang
    Yan Z.
    Geng L.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2019, 51 (06): : 18 - 24
  • [10] Preparation and Formation Mechanism of Lightweight Ultra-high Performance Concrete
    Zhang G.
    Ge J.
    Ding Q.
    Yang J.
    Xiang W.
    Hu J.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (02): : 381 - 390