Variable linear transformation improved physics-informed neural networks to solve thin-layer flow problems

被引:0
|
作者
Wu, Jiahao [1 ]
Wu, Yuxin [1 ]
Zhang, Guihua [1 ]
Zhang, Yang [1 ]
机构
[1] Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Physics -informed neural networks (PINNs); Differential equations (DEs); Jet flow; Wake flow; Mixing layer; Boundary layer; DEEP LEARNING FRAMEWORK;
D O I
10.1016/j.jcp.2024.112761
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Physics-informed neural networks (PINNs) have attracted wide attention due to their ability to seamlessly embed the learning process with physical laws and their considerable success in solving forward and inverse differential equation (DE) problems. While most studies are improving the learning process and network architecture of PINNs, less attention has been paid to the modification of the DE system, which may play an important role in addressing some limitations of PINNs. One of the simplest modifications that can be implemented to all DE systems is the variable linear transformation (VLT). Therefore, in this work, we propose the VLT-PINNs that solve the DE systems of the linear-transformed variables instead of the original ones. To clearly illustrate the importance of prior knowledge in determining the VLT parameters, we choose the thin-layer flow problems as our focus. Ten related cases were tested, including the jet flows, wake flows, mixing layers, boundary layers and Kovasznay flows. Based on the principle of normalization and for a better match of the DE system to the preference of NNs, we identify three principles for determining the VLT parameters: magnitude normalization for dependent variables (principle 1), local normalization for independent variables (principle 2), and appropriate scaling for physics-related parameters in inverse problems (principle 3). The VLT-PINNs with the VLT parameters suggested by the proposed principles show excellent performance over all the test cases, while the results are quite poor with the VLT parameters suggested by traditional linear transformations, such as nondimensionalization and global normalization. Comparison studies also show that only under the constraints of the VLT principles can we obtain satisfactory results. Besides, we find tanh is more appropriate as the activation function than sin for thin-layer flow problems, from both posteriori results and priori analyses with physical intuition. We highlight that our VLT method is an attempt to combine the three advantages of accuracy, universality and simplicity, and hope that it can provide new insights into the better integration of prior knowledge, physical intuition and the nature of NNs. The code for this paper is available on https:// github.com/CAME-THU/VLT-PINN.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] On the potential of physics-informed neural networks to solve inverse problems in tokamaks
    Rossi, Riccardo
    Gelfusa, Michela
    Murari, Andrea
    [J]. NUCLEAR FUSION, 2023, 63 (12)
  • [2] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [3] Physics-informed neural networks for spherical indentation problems
    Marimuthu, Karuppasamy Pandian
    Lee, Hyungyil
    [J]. MATERIALS & DESIGN, 2023, 236
  • [4] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [5] Physics-Informed Neural Networks for Quantum Eigenvalue Problems
    Jin, Henry
    Mattheakis, Marios
    Protopapas, Pavlos
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    [J]. TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [7] Application of physics-informed neural networks to inverse problems in unsaturated groundwater flow
    Depina, Ivan
    Jain, Saket
    Valsson, Sigurdur Mar
    Gotovac, Hrvoje
    [J]. GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2022, 16 (01) : 21 - 36
  • [8] Spatiotemporal parallel physics-informed neural networks: A framework to solve inverse problems in fluid mechanics
    Xu, Shengfeng
    Yan, Chang
    Zhang, Guangtao
    Sun, Zhenxu
    Huang, Renfang
    Ju, Shengjun
    Guo, Dilong
    Yang, Guowei
    [J]. PHYSICS OF FLUIDS, 2023, 35 (06)
  • [9] Physics-Informed Graph Neural Networks to solve 1-D equations of blood flow
    Sen, Ahmet
    Ghajar-Rahimi, Elnaz
    Aguirre, Miquel
    Navarro, Laurent
    Goergen, Craig J.
    Avril, Stephane
    [J]. Computer Methods and Programs in Biomedicine, 2024, 257
  • [10] Physics-informed neural networks with hard linear equality constraints
    Chen, Hao
    Flores, Gonzalo E. Constante
    Li, Can
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2024, 189