Assembling the Cryogenic Front-end for the ALPACA Phased Array Feed

被引:0
|
作者
Vishwas, Amit [1 ]
Gull, George E. [1 ]
Parshley, Stephen C. [1 ]
Cortes-Medellin, German [1 ]
Campbell, Donald B. [1 ]
Herter, Terry L. [1 ]
Groppi, Christopher E. [2 ]
Burnett, Mitchell C. [3 ]
Warnick, Karl F. [3 ]
Jeffs, Brian D. [3 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
[2] Arizona State Univ, Tempe, AZ 85287 USA
[3] Brigham Young Univ, Provo, UT 84604 USA
基金
美国国家科学基金会;
关键词
D O I
10.23919/USNC-URSI54200.2023.10289395
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Advanced L-band Phased Array Camera for Astronomy (ALPACA) is a 69-element, fully cryogenic, phased array feed operating from 1.3-1.7 GHz proposed to be deployed at the prime focus of the 100-m Green Bank Telescope. Here we report on the progress towards assembling the front-end including a large RF-transparent vacuum window, the receiving elements, and several solutions we have deployed to significantly reduce the complexity of scaling the number of elements in an array. All the cryogenic low-noise amplifiers (LNAs) have been thermally cycled and rigorously tested. LNA bias and readout is shared on multi-channel flexible striplines that route from outside the cryostat through a vacuum interface and terminate at the cold stage where the antenna elements are deployed. ALPACA will act as a 'Radio Camera' by digitally forming 40 simultaneous dual polarization beams enabling large surveys for various radio astronomical applications.
引用
收藏
页码:43 / 44
页数:2
相关论文
共 50 条
  • [1] Parameters Correction System for Phased Array Front-end Chip
    Filippov, Ivan
    Vertegel, Valeriy
    Gimpilevich, Yuri
    2019 URAL SYMPOSIUM ON BIOMEDICAL ENGINEERING, RADIOELECTRONICS AND INFORMATION TECHNOLOGY (USBEREIT), 2019, : 401 - 404
  • [2] A Miniaturized High-Power Integrated Front-End for Phased Array Antenna
    Guo, Letian
    Deng, Guangjian
    Xie, Shaoyi
    Shao, Hao
    Huang, Wenhua
    Zhang, Yuchuan
    Zhang, Yun Jing
    Tong, Mei Song
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2023, 13 (11): : 1770 - 1777
  • [3] Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator
    Winterstein, Felix
    Sessler, Gunther
    Montagna, Maria
    Mendijur, Magdalena
    Dauron, Guillaume
    Besso, Piermario
    2012 13TH INTERNATIONAL RADAR SYMPOSIUM (IRS), 2012, : 177 - 182
  • [4] A 60 Ghz multiport front-end architecture with integrated phased antenna array
    Moldovan, E.
    Tatu, S. O.
    Affes, S.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2008, 50 (05) : 1371 - 1376
  • [5] A 28 GHz front-end for phased array receivers in 180 nm CMOS process
    Guo, Benqing
    Wang, Xuebing
    Chen, Hongpeng
    MODERN PHYSICS LETTERS B, 2020, 34
  • [6] A 28 GHz Front-End for Phased Array Receivers Simulated in 180 nm CMOS
    Wang, Xuebing
    Guo, Benqing
    Wu, Jingwei
    Gong, Jing
    2020 IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS (ICSE 2020), 2020, : 85 - 88
  • [7] Development of Superconducting Front-End T/R Module for Active Phased Array Antenna
    Kayano, Hiroyuki
    Kumamoto, Tsuyoshi
    Iijima, Kenta
    Shiokawa, Noritsugu
    Kawaguchi, Tamio
    Shinonaga, Mitsuyoshi
    2015 9TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2015,
  • [8] An Area Efficient Built-in Phase Testing Equipment for Phased Array Front-End ICs
    Waks, Adam
    Crand, Olivier
    Tesson, Olivier
    Taris, Thierry
    Begueret, Jean-Baptiste
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [9] Studies of Front-End Distortion Characterization via Mutual Coupling Measurements in Phased Array Systems
    Herndon, Matthew
    Yeary, Mark
    Palmer, Robert
    2020 IEEE INTERNATIONAL RADAR CONFERENCE (RADAR), 2020, : 798 - 803
  • [10] A 52 GHz Phased-Array Receiver Front-End in 90 nm Digital CMOS
    Scheir, Karen
    Bronckers, Stephane
    Borremans, Jonathan
    Wambacq, Piet
    Rolain, Yves
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (12) : 2651 - 2659