Globalization of partial group actions on semiprime Lie algebras and unital Jordan algebras

被引:0
|
作者
Dokuchaev, Mikhailo [1 ]
Rodriguez, Jose L. Vilca [1 ]
机构
[1] Univ Sao Paulo, Dept Matemat, Rua Matao, 1010, BR-05508090 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Lie algebra; Jordan algebra; Partial group action; Globalization; ENVELOPING ACTIONS; CROSSED-PRODUCTS; QUOTIENTS; INVERSE;
D O I
10.1016/j.jalgebra.2023.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give necessary and sufficient conditions for the existence of a semiprime globalization for a partial group action on a semiprime Lie algebra L, and with an additional reasonable condition, we show that this semiprime globalization is unique up to isomorphism. Moreover, under the same condition we prove that any globalizable partial group action on L induces a globalizable partial group action on its maximal quotient algebra. For Jordan algebras, we show that a globalizable partial group action on a unital Jordan algebra J induces a globalizable partial group action on the unital special universal envelope for J.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:510 / 532
页数:23
相关论文
共 50 条
  • [1] ACTIONS OF LIE SUPERALGEBRAS ON SEMIPRIME ALGEBRAS WITH CENTRAL INVARIANTS
    Grzeszczuk, Piotr
    Hryniewicka, Malgorzata
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52A : 93 - 102
  • [2] Lie and Jordan Properties in Group Algebras
    Goodaire, Edgar G.
    Milies, Cesar Polcino
    NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 : 163 - 173
  • [3] Partial actions on reductive Lie algebras
    Vilca Rodriguez, Jose L.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) : 1750 - 1767
  • [4] JORDAN DERIVATIONS ON A LIE IDEAL OF A SEMIPRIME RING AND THEIR APPLICATIONS IN BANACH ALGEBRAS
    Kim, Byung-Do
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2016, 23 (04): : 347 - 375
  • [5] Multiplier Hopf algebras: Globalization for partial actions
    Fonseca, Graziela
    Fontes, Eneilson
    Martini, Grasiela
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (03) : 539 - 565
  • [6] Jordan derivations of unital algebras with idempotents
    Benkovic, Dominik
    Sirovnik, Nejc
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) : 2271 - 2284
  • [7] Nonlinear *-Lie derivations on unital algebras
    Jabeen, Aisha
    Ashraf, Mohammad
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (04): : 731 - 746
  • [8] Lie superderivations on unital algebras with idempotents
    Ghahramani, Hoger
    Heidari Zadeh, Leila
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (11) : 4853 - 4870
  • [9] Jordan algebras at Jordan elements of semiprime rings with involution
    Brox, Jose
    Garcia, Esther
    Gomez Lozano, Miguel
    JOURNAL OF ALGEBRA, 2016, 468 : 155 - 181
  • [10] Galois Groups and Group Actions on Lie Algebras
    Agore, A. L.
    Militaru, G.
    JOURNAL OF LIE THEORY, 2018, 28 (04) : 1165 - 1188