Emulation techniques for scenario and classical control design of tokamak plasmas

被引:1
|
作者
Agnello, A. [1 ]
Amorisco, N. C. [1 ]
Keats, A. [1 ]
Holt, G. K. [1 ]
Buchanan, J. [2 ]
Pamela, S. [2 ]
Vincent, C. [2 ]
McArdle, G. [2 ]
机构
[1] Scitech Daresbury, STFC Hartree Ctr, Keckwick Lane, Warrington WA4 4AD, England
[2] Culham Sci Ctr, United Kingdom Atom Energy Author, Abingdon OX14 3DB, England
基金
英国科学技术设施理事会;
关键词
MAGNETIC GEOMETRY; SHAPE; PERFORMANCE;
D O I
10.1063/5.0187822
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The optimization of scenarios and design of real-time-control in tokamaks, especially for machines still in design phase, requires a comprehensive exploration of solutions to the Grad-Shafranov (GS) equation over a high-dimensional space of plasma and coil parameters. Emulators can bypass the numerical issues in the GS equation, if a large enough library of equilibria is available. We train an ensemble of neural networks to emulate the typical shape-control targets (separatrix at midplane, X-points, divertor strike point, flux expansion, and poloidal beta) as a function of plasma parameters and active coil currents for the range of plasma configurations relevant to spherical tokamaks with a super-X divertor, with percent-level accuracy. This allows a quick calculation of the classical-control shape matrices, potentially allowing real-time calculation at any point in a shot with submillisecond latency. We devise a hyperparameter sampler to select the optimal network architectures and quantify uncertainties on the model predictions. To generate the relevant training set, we devise a Markov-chain Monte Carlo algorithm to produce large libraries of forward Grad-Shafranov solutions without the need for user intervention. The algorithm promotes equilibria with desirable properties, while avoiding parameter combinations resulting in problematic profiles or numerical issues in the integration of the GS equation.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] NEUTRON MEASUREMENT TECHNIQUES FOR TOKAMAK PLASMAS
    JARVIS, ON
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 1994, 36 (02) : 209 - 244
  • [2] Techniques for studying the separatrix of tokamak plasmas
    Webster, Anthony J.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (01)
  • [3] The control of tokamak configuration variable plasmas
    Lister, JB
    Hofmann, F
    Moret, JM
    Buhlmann, F
    Dutch, MJ
    Fasel, D
    Favre, A
    Isoz, PF
    Marletaz, B
    Marmillod, P
    Martin, Y
    Perez, A
    Ward, DJ
    [J]. FUSION TECHNOLOGY, 1997, 32 (03): : 321 - 373
  • [4] INVESTIGATION OF DISCRETE TIME EMULATION TECHNIQUES TO SIMPLIFY REPETITIVE CONTROL DESIGN
    Prasitmeeboon, Pitcha
    Longman, Richard W.
    [J]. ASTRODYNAMICS 2013, PTS I-III, 2014, 150 : 1941 - 1958
  • [5] Modeling, observer design and robust control of the particle density profile in tokamak plasmas
    Blanken, T. C.
    Felici, F.
    de Baar, M. R.
    Heemels, W. P. M. H.
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 7628 - 7635
  • [6] Disruption prediction with artificial intelligence techniques in tokamak plasmas
    J. Vega
    A. Murari
    S. Dormido-Canto
    G. A. Rattá
    M. Gelfusa
    [J]. Nature Physics, 2022, 18 : 741 - 750
  • [7] Disruption prediction with artificial intelligence techniques in tokamak plasmas
    Vega, J.
    Murari, A.
    Dormido-Canto, S.
    Ratta, G. A.
    Gelfusa, M.
    [J]. NATURE PHYSICS, 2022, 18 (07) : 741 - 750
  • [8] Nonlinear evolution and control of neo-classical tearing mode in reversed magnetic shear tokamak plasmas
    Zheng-Xiong, Wang
    Tong, Liu
    Lai, Wei
    [J]. REVIEWS OF MODERN PLASMA PHYSICS, 2022, 6 (01)
  • [9] Modeling and control of System of Systems: the Tokamak scenario
    Buscarino, Arturo
    Corradino, Claudia
    Fortuna, Luigi
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [10] PROPOSED SCENARIO FOR BURN CONTROL IN TOKAMAK REACTORS
    SESTERO, A
    [J]. NUCLEAR TECHNOLOGY-FUSION, 1983, 4 (03): : 437 - 451