Global convergence of improved Chebyshev-Secant type methods

被引:1
|
作者
Yadav, Nisha [1 ]
Singh, Sukhjit [1 ]
机构
[1] Dr BR Ambedkar Natl Inst Technol, Dept Math, Jalandhar, India
来源
JOURNAL OF ANALYSIS | 2024年 / 32卷 / 01期
关键词
Divided differences; Improved Chebyshev-Secant type method; Global convergence; Dynamics; INTEGRAL-EQUATIONS; HAMMERSTEIN; ITERATIONS;
D O I
10.1007/s41478-023-00696-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present the global convergence of improved Chebyshev-Secant type methods (ICSTM) for solving nonlinear Fredholm integral equations of the second kind with non-differentiable Nemytskii operator. Existence and uniqueness theorems are established for the solution by imposing the conditions on Nemytskii operator and auxiliary points. Using recurrence relations, radii of convergence balls are obtained that ensure the convergence of iterative methods, starting from any point in the ball centered on an auxiliary point. In order to illustrate the theoretical results, we consider a nonlinear Hammerstein type integral equation that arises in the field of chemical engineering.
引用
收藏
页码:597 / 611
页数:15
相关论文
共 50 条
  • [1] Global convergence of improved Chebyshev-Secant type methods
    Nisha Yadav
    Sukhjit Singh
    The Journal of Analysis, 2024, 32 : 597 - 611
  • [2] Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators
    Abhimanyua Kumar
    D. K. Gupta
    Eulalia Martínez
    José L. Hueso
    Numerical Algorithms, 2021, 86 : 1051 - 1070
  • [3] Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators
    Kumar, Abhimanyua
    Gupta, D. K.
    Martinez, Eulalia
    Hueso, Jose L.
    NUMERICAL ALGORITHMS, 2021, 86 (03) : 1051 - 1070
  • [4] On the semilocal convergence of efficient Chebyshev-Secant-type methods
    Argyros, I. K.
    Ezquerro, J. A.
    Gutierrez, J. M.
    Hernandez, M. A.
    Hilout, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (10) : 3195 - 3206
  • [5] Convergence analysis of the secant type methods
    Chen, Jinhai
    Shen, Zuhe
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) : 514 - 524
  • [6] Convergence conditions for secant-type methods
    Argyros, Ioannis K.
    Hilout, Said
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (01) : 253 - 272
  • [7] On the local convergence of Secant-type methods
    Amat, S
    Busquier, S
    Gutiérrez, JM
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (09) : 1153 - 1161
  • [8] Convergence conditions for secant-type methods
    Ioannis K. Argyros
    Saïd Hilout
    Czechoslovak Mathematical Journal, 2010, 60 : 253 - 272
  • [9] A UNIFIED CONVERGENCE ANALYSIS FOR SECANT-TYPE METHODS
    Argyros, Ioannis Konstantinos
    Alberto Magrenan, Angel
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (06) : 1155 - 1175
  • [10] Chebyshev-Secant-type Methods for Non-differentiable Operators
    Argyros, I. K.
    Ezquerro, J. A.
    Gutierrez, J. M.
    Hernandez, M. A.
    Hilout, S.
    MILAN JOURNAL OF MATHEMATICS, 2013, 81 (01) : 25 - 35