Entropy modulation strategy of P2-type layered transition metal oxide cathodes for sodium-ion batteries with a high performance

被引:14
|
作者
Wang, Yusong [1 ]
Wang, Yingshuai [1 ]
Xing, Yuhang [1 ]
Jiang, Chunyu [1 ]
Pang, Yanfei [1 ]
Liu, Hongfeng [1 ]
Wu, Feng [1 ]
Gao, Hongcai [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314019, Peoples R China
[3] Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401120, Peoples R China
基金
北京市自然科学基金;
关键词
NA; CHEMISTRY; CRYSTAL;
D O I
10.1039/d3ta04094a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
P2-type Na0.67Ni0.33Mn0.67O2 is a promising cathode for sodium-ion batteries due to its high theoretical capacity, facile fabrication, low cost, and environmental friendliness. However, it suffers from an undesirable phase transformation and severe capacity fading above 4.2 V. In this work, we propose a strategy to improve the performance of the P2-type layered transition metal oxide cathode by adjusting the configurational entropy of the material and the synergistic effect of zinc and magnesium co-doping. We use X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and in situ XRD technologies to reveal the change in configurational entropy of the material structure and to explore the influence of related factors. The structural and thermal stability was improved through modification with zinc and magnesium co-doping, compared to Na0.67Mn0.67Ni0.37O2. Meanwhile, the P2 to O2 phase transition of the material under high voltage was inhibited. When tested in combination with a sodium-metal anode in a coin cell configuration, Na0.67Mn0.67Ni0.21Mg0.06Zn0.06O2 exhibited improved rate capability (69.24 mA h g-1 at 10C) and excellent cycling stability (82.1% capacity retention after 200 cycles at 1C). This work presents a route to rationally design cathode materials with entropy modulation to improve the performance of cathode materials for sodium-ion batteries. Configuration entropy is increased by doping with multiple cations, whereby the material defects and active sites are increased and phase transition is inhibited at high voltage. Meanwhile, the sodium-ion diffusion rate was improved with the co-doping strategy.
引用
收藏
页码:19955 / 19964
页数:10
相关论文
共 50 条
  • [1] Recent Progress of P2-Type Layered Transition-Metal Oxide Cathodes for Sodium-Ion Batteries
    Liu Zhengbo
    Xu Xijun
    Ji Shaomin
    Zeng Liyan
    Zhang Dechao
    Liu Jun
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (35) : 7747 - 7766
  • [2] Entropy Tuning Stabilizing P2-Type Layered Cathodes for Sodium-Ion Batteries
    Liu, Jie
    Huang, Weiyuan
    Liu, Renbin
    Lang, Jian
    Li, Yuhao
    Liu, Tongchao
    Amine, Khalil
    Li, Hongsen
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (24)
  • [3] The effect of configurational entropy on acoustic emission of P2-type layered oxide cathodes for sodium-ion batteries
    Dreyer, Soeren L.
    Zhang, Ruizhuo
    Wang, Junbo
    Kondrakov, Aleksandr
    Wang, Qingsong
    Brezesinski, Torsten
    Janek, Juergen
    JOURNAL OF PHYSICS-ENERGY, 2023, 5 (03):
  • [4] Na-deficient P2-type layered oxide cathodes for practical sodium-ion batteries
    Huang, Yu
    Zeng, Weixiong
    Li, Kui
    Zhu, Xiaobo
    MICROSTRUCTURES, 2024, 4 (03):
  • [5] Regulating electron distribution of P2-type layered oxide cathodes for practical sodium-ion batteries
    Liu, Zhengbo
    Peng, Chao
    Wu, Jun
    Yang, Tingting
    Zeng, Jun
    Li, Fangkun
    Kucernak, Anthony
    Xue, Dongfeng
    Liu, Qi
    Zhu, Min
    Liu, Jun
    MATERIALS TODAY, 2023, 68 : 22 - 33
  • [6] A high-entropy layered P2-type cathode with high stability for sodium-ion batteries
    Liu, Hongfeng
    Wang, Yingshuai
    Ding, Xiangyu
    Wang, Yusong
    Wu, Feng
    Gao, Hongcai
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (06) : 1304 - 1313
  • [7] High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries
    Zhao, Chenglong
    Ding, Feixiang
    Lu, Yaxiang
    Chen, Liquan
    Hu, Yong-Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 264 - 269
  • [8] Advances in layered transition metal oxide cathodes for sodium-ion batteries
    Gao, Hanqing
    Zeng, Jinjue
    Sun, Zhipeng
    Jiang, Xiangfen
    Wang, Xuebin
    MATERIALS TODAY ENERGY, 2024, 42
  • [9] Effect of lithium doping in P2-Type layered oxide cathodes on the electrochemical performances of Sodium-Ion batteries
    Li, Lijiang
    Su, Gaoqin
    Lu, Chu
    Ma, Xiaobo
    Ma, Ling
    Wang, Hailong
    Cao, Zhijie
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [10] Recent advances in P2-type Ni–Mn-based layered oxide cathodes for sodium-ion batteries
    Jiang N.
    Sun L.-R.
    Wang H.-L.
    Wu Z.-H.
    Jiao P.-X.
    Zhang K.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (07): : 1071 - 1085