Zero-Shot Text Classification with Semantically Extended Textual Entailment

被引:0
|
作者
Liu, Tengfei [1 ]
Hu, Yongli [1 ]
Chen, Puman [1 ]
Sun, Yanfeng [1 ]
Yin, Baocai [1 ]
机构
[1] Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Zero-shot text classification; semantic extension; text entailment;
D O I
10.1109/IJCNN54540.2023.10191094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot text classification (0SHOT-TC) aims to detect classes that the model never seen in the training set, and has attracted much attention in the research community of Natural Language Processing (NLP). The emergence of pretrained language models has fostered the progress of 0SHOT-TC, which turns the task into a textual entailment problem of binary classification. It learns an entailment relatedness (yes/no) between the given sentence (premise) and each category (hypothesis) separately. However, the hypothesis generation paradigms need to be further studied, since the label itself or the label descriptions have limited ability to fully express the category space. Conversely, humans can easily extend a set of words describing the categories to be classified. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Textual Entailment (SETE), which imitates the human's ability in knowledge extension. In the proposed method, three semantic extension methods are used to enrich the categories through a combination of static knowledge (e.g. expert knowledge, knowledge graph) and dynamic knowledge (e.g. language models), and the textual entailment model is finally used for 0SHOT-TC. The experimental results on the benchmarks show that our approach significantly outperforms the current methods in both generalized and nongeneralized 0SHOT-TC.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A weakly supervised textual entailment approach to zero-shot text classification
    Pamies, Marc
    Llop, Joan
    Multari, Francesco
    Duran-Silva, Nicolau
    Parra-Rojas, Cesar
    Gonzalez-Agirre, Aitor
    Massucci, Francesco Alessandro
    Villegas, Marta
    [J]. 17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 286 - 296
  • [2] Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network
    Liu, Tengfei
    Hu, Yongli
    Gao, Junbin
    Sun, Yanfeng
    Yin, Baocai
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8352 - 8359
  • [3] Issues with Entailment-based Zero-shot Text Classification
    Ma, Tingting
    Yao, Jin-Ge
    Lin, Chin-Yew
    Zhao, Tiejun
    [J]. ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, 2021, : 786 - 796
  • [4] Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach
    Yin, Wenpeng
    Hay, Jamaal
    Roth, Dan
    [J]. 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 3914 - 3923
  • [5] Generalised Zero-shot Learning for Entailment-based Text Classification with Externa Knowledge
    Wang, Yuqi
    Wang, Wei
    Chen, Qi
    Huang, Kaizhu
    Anh Nguyen
    De, Suparna
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2022), 2022, : 19 - 25
  • [6] Zero-Shot Turkish Text Classification
    Birim, Ahmet
    Erden, Mustafa
    Arslan, Levent M.
    [J]. 29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [7] Retrieval Augmented Zero-Shot Text Classification
    Abdullahi, Tassallah
    Singh, Ritambhara
    Eickhoff, Carsten
    [J]. PROCEEDINGS OF THE 2024 ACM SIGIR INTERNATIONAL CONFERENCE ON THE THEORY OF INFORMATION RETRIEVAL, ICTIR 2024, 2024, : 195 - 203
  • [8] Unified benchmark for zero-shot Turkish text classification
    celik, Emrecan
    Dalyan, Tugba
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [9] Extreme Zero-Shot Learning for Extreme Text Classification
    Xiong, Yuanhao
    Chang, Wei-Cheng
    Hsieh, Cho-Jui
    Yu, Hsiang-Fu
    Dhillon, Inderjit
    [J]. NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 5455 - 5468
  • [10] Learn to Adapt for Generalized Zero-Shot Text Classification
    Zhang, Yiwen
    Yuan, Caixia
    Wang, Xiaojie
    Bai, Ziwei
    Liu, Yongbin
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 517 - 527