Optimal system of solution using group invariance technique for shock wave in a non-ideal self-gravitating gas in rotating medium in presence of magnetic field

被引:2
|
作者
Nath, Gorakh [1 ]
Maurya, Abhay [1 ]
机构
[1] Motilal Nehru Natl Inst Technol Allahabad, Dept Math, Prayagraj 211004, Uttar Pradesh, India
关键词
group invariance technique; magnetogasd-ynamic shock waves; non-ideal self-gravitating gas; rotating medium; similarity solution; ISOTHERMAL BLAST WAVES; CYLINDRICAL SHOCK; SIMILARITY SOLUTIONS; MATHEMATICAL-THEORY; EXPONENTIAL SHOCK; PROPAGATION; FLOW; MODEL;
D O I
10.1515/zna-2023-0026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work demonstrates the study of the optimal system of solutions for shock wave propagation in a non-ideal self-gravitating gas in rotating medium with magnetic field (axial or azimuthal) for the adiabatic flow in cylindrical geometry by applying the group invariance technique. Using the group invariance technique, we have obtained the one-dimensional (1-D) optimal system of sub-algebra for the basic governing equations. The infinitesimal group optimal classes are obtained and the similarity solution in four possible cases (two cases for perfect gas and two cases for non-ideal gas) with exponential law shock path are discussed. The numerical solution by using the Runge Kutta 4th order method is obtained and the distribution of physical variables are shown via graph. The impact of the rotational parameter, non-idealness parameter, shock Cowling number, similarity exponent and gravitational parameter on the strength of the shock and flow variables are investigated. With an increase in the shock Cowling number, non-idealness and rotational parameters, the shock strength decreases, i.e., they have decaying impact on shock wave; whereas the shock strength increases with gravitational parameter and similarity exponent. Also, the strength of the shock is reduced by considering the magnetic field to be axial instead of azimuthal.
引用
收藏
页码:721 / 742
页数:22
相关论文
共 50 条