HOMOGENIZATION ON ARBITRARY MANIFOLDS PROOF WITH TEST FUNCTIONS

被引:0
|
作者
Contreras, Gonzalo [1 ]
Estrada, Yuriria [1 ]
机构
[1] Ctr Invest Matemat, AP 402, Guanajuato GTO 36000, Mexico
关键词
Aubry-Mather theory; Hamilton-Jacobi equations; homogenization; perturbed test function method; homogenization on manifolds;
D O I
10.3934/dcds.2024010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the homogenization of the Hamilton-Jacobi equation on arbitrary compact manifolds using Evans perturbed test function method.
引用
收藏
页码:1781 / 1809
页数:29
相关论文
共 50 条
  • [1] Homogenization on arbitrary manifolds
    Contreras, Gonzalo
    Iturriaga, Renato
    Siconolfi, Antonio
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (1-2) : 237 - 252
  • [2] Homogenization on arbitrary manifolds
    Gonzalo Contreras
    Renato Iturriaga
    Antonio Siconolfi
    Calculus of Variations and Partial Differential Equations, 2015, 52 : 237 - 252
  • [3] Harmonic functions for quadrilateral remeshing of arbitrary manifolds
    Dong, S
    Kircher, S
    Garland, M
    COMPUTER AIDED GEOMETRIC DESIGN, 2005, 22 (05) : 392 - 423
  • [4] Homogenization on manifolds
    Contreras, Gonzalo
    MATHEMATICAL CONGRESS OF THE AMERICAS, 2016, 656 : 27 - 39
  • [5] Using the vector distance functions to evolve manifolds of arbitrary codimension
    Gomes, J
    Faugeras, O
    SCALE-SPACE AND MORPHOLOGY IN COMPUTER VISION, PROCEEDINGS, 2001, 2106 : 1 - 13
  • [6] HOMOGENIZATION OF METRICS IN OSCILLATING MANIFOLDS
    Braides, Andrea
    Cancedda, Andrea
    Piat, Valeria Chiado
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (03) : 889 - 912
  • [7] Homogenization for operators with arbitrary perturbations in coefficients
    Borisov, D. I.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 369 : 41 - 93
  • [8] MANIFOLDS OF MEMBERS OF AN ARBITRARY TOTALITY
    GERSHUNI, B
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A598 - &
  • [9] A METRIC PROOF THAT δ-HOMOGENEOUS MANIFOLDS ARE GEODESIC ORBIT MANIFOLDS
    Arvanitoyeorgos, Andreas
    Souris, Nikolaos Panagiotis
    COLLOQUIUM MATHEMATICUM, 2021, 165 (02) : 219 - 224