ALAE-TAE-CutMix+: Beyond the State-of-the-Art for Human Activity Recognition Using Wearable Sensors

被引:3
|
作者
Ahmad, Nafees [1 ]
Leung, Ho-fung [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
关键词
ubiquitous computing; activity recognition; deep learning; attention; wearable sensors; data augmentation;
D O I
10.1109/PERCOM56429.2023.10099138
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human Activity Recognition (HAR) through wearable sensors greatly improves the quality of human life through its multiple applications in health monitoring, assisted living, and fitness tracking. For HAR, multi-sensor channel information is vital to performance. Current work states that applying an attention neural network to prioritize discriminatory sensor channels helps the model classify activity more precisely. However, getting discriminatory information from multisensory channels is not always trivial. For example, when collecting data from elderly hospitalized patients. In this context, existing HAR methods struggle to classify activities, particularly activities with similar natures. Moreover, HAR deep models predominantly suffer from overfitting due to small datasets, which leads to poor performance. Data augmentation is a viable solution to this problem. However, currently available data augmentation methods to HAR have various drawbacks, including the possibility of being domain-dependent, and resulting in distorted models for test sequences. To address the aforementioned HAR problems, we propose a novel framework that primarily focuses on two aspects. First, enhancing the latent information across each sensor channel and learning to exploit the relation among multiple latent features and the ongoing activity. Consequently, this enriches the discriminatory feature representations of each activity. Second, a new augmentation strategy is introduced to address the shortcomings of existing multi-sensor channel data augmentation to generalize our HAR model. Our model outperforms existing state-of-the-art approaches on the four most commonly used HAR datasets from diverse domains. We extensively demonstrate the effectiveness of the proposed framework through detailed quantitative analysis of experimental results and ablation studies.
引用
收藏
页码:222 / 231
页数:10
相关论文
共 50 条
  • [1] State-of-the-art survey on activity recognition and classification using smartphones and wearable sensors
    Chaurasia, Sunita Kumari
    Reddy, S. R. N.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (01) : 1077 - 1108
  • [2] State-of-the-art survey on activity recognition and classification using smartphones and wearable sensors
    Sunita Kumari Chaurasia
    S. R. N. Reddy
    Multimedia Tools and Applications, 2022, 81 : 1077 - 1108
  • [3] Attend and Discriminate: Beyond the State-of-the-Art for Human Activity Recognition UsingWearable Sensors
    Abedin, Alireza
    Ehsanpour, Mahsa
    Shi, Qinfeng
    Rezatofighi, Hamid
    Ranasinghe, Damith C.
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2021, 5 (01):
  • [4] Human Activity Recognition Using Wearable Accelerometer Sensors
    Zubair, Muhammad
    Song, Kibong
    Yoon, Changwoo
    2016 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2016,
  • [5] Deep Human Activity Recognition Using Wearable Sensors
    Lawal, Isah A.
    Bano, Sophia
    12TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2019), 2019, : 45 - 48
  • [6] A Survey on Human Activity Recognition using Wearable Sensors
    Lara, Oscar D.
    Labrador, Miguel A.
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2013, 15 (03): : 1192 - 1209
  • [7] Physical Human Activity Recognition Using Wearable Sensors
    Attal, Ferhat
    Mohammed, Samer
    Dedabrishvili, Mariam
    Chamroukhi, Faicel
    Oukhellou, Latifa
    Amirat, Yacine
    SENSORS, 2015, 15 (12) : 31314 - 31338
  • [8] Wearable strain sensors: state-of-the-art and future applications
    Yadav, Ashish
    Yadav, Neha
    Wu, Yongling
    RamaKrishna, Seeram
    Zheng, Hongyu
    MATERIALS ADVANCES, 2023, 4 (06): : 1444 - 1459
  • [9] Energy Efficient Human Activity Recognition Using Wearable Sensors
    Ding, Genming
    Tian, Jun
    Wu, Jinsong
    Zhao, Qian
    Xie, Lili
    2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2018, : 379 - 383
  • [10] An Improved Algorithm for Human Activity Recognition Using Wearable Sensors
    Chen, Ye
    Guo, Ming
    Wang, Zhelong
    2016 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2016, : 248 - 252