Evaluation of Class Distribution and Class Combinations on Semantic Segmentation of 3D Point Clouds With PointNet

被引:3
|
作者
Barnefske, Eike [1 ]
Sternberg, Harald [1 ]
机构
[1] HafenCity Univ Hamburg, Hydrog & Geodesy, D-22335 Hamburg, Germany
关键词
3D point clouds; data hyperparameter; hierarchical class combination; hyperparameter; PointNet; semantic classes; semantic segmentation; unbalanced data; CLASS IMBALANCE; MINORITY CLASS; PREDICTION; NETWORKS;
D O I
10.1109/ACCESS.2022.3233411
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Point clouds are generated by light imaging, detection and ranging (LIDAR) scanners or depth imaging cameras, which capture the geometry from the scanned objects with high accuracy. Unfortunately, these systems are unable to identify the semantics of the objects. Semantic 3D point clouds are an important basis for modeling the real world in digital applications. Manual semantic segmentation is a labor and cost intensive task. Automation of semantic segmentation using machine learning and deep learning (DL) approaches is therefore an interesting subject of research. In particular, point-based network architectures, such as PointNet, lead to a beneficial semantic segmentation in individual applications. For the application of DL methods, a large number of hyperparameters (HPs) have to be determined and these HPs influence the training success. In our work, the investigated HPs are the class distribution and the class combination. By means of seven combinations of classes following a hierarchical scheme and four methods to adapt the class sizes, these HPs are investigated in a detailed and structured manner. The investigated settings show an increased semantic segmentation performance, by an increase of 31% in recall for the class Erroneous points or that all classes have a recall of higher than 50%. However, based on our results the correct setting of only these HPs does not lead to a simple, universal and practical semantic segmentation procedure.
引用
收藏
页码:3826 / 3845
页数:20
相关论文
共 50 条
  • [1] Semantic Segmentation of Transmission Corridor 3D Point Clouds Based on CA-PointNet++
    Wang, Guanjian
    Wang, Linong
    Wu, Shaocheng
    Zu, Shengxuan
    Song, Bin
    ELECTRONICS, 2023, 12 (13)
  • [2] Class-Balanced PolarMix for Data Augmentation of 3D LIDAR Point Clouds Semantic Segmentation
    Liu, Bo
    Qi, Xiao
    JOURNAL OF INTERNET TECHNOLOGY, 2025, 26 (01): : 65 - 75
  • [3] Novel Class Discovery for 3D Point Cloud Semantic Segmentation
    Riz, Luigi
    Saltori, Cristiano
    Ricci, Elisa
    Poiesi, Fabio
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9393 - 9402
  • [4] SEGCloud: Semantic Segmentation of 3D Point Clouds
    Tchapmi, Lyne P.
    Choy, Christopher B.
    Armeni, Iro
    Gwak, JunYoung
    Savarese, Silvio
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 537 - 547
  • [5] Point attention network for semantic segmentation of 3D point clouds
    Feng, Mingtao
    Zhang, Liang
    Lin, Xuefei
    Gilani, Syed Zulqarnain
    Mian, Ajmal
    PATTERN RECOGNITION, 2020, 107 (107)
  • [6] GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds
    Zhang, Zihui
    Yang, Bo
    Wang, Bing
    Li, Bo
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17619 - 17629
  • [7] A DENSE POINTNET plus plus ARCHITECTURE FOR 3D POINT CLOUD SEMANTIC SEGMENTATION
    Lian, Yanchao
    Feng, Tuo
    Zhou, Jinliu
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5061 - 5064
  • [8] Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds
    Engelmann, Francis
    Kontogianni, Theodora
    Hermans, Alexander
    Leibe, Bastian
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 716 - 724
  • [9] GECNN for Weakly Supervised Semantic Segmentation of 3D Point Clouds
    He, Zifen
    Zhu, Shouye
    Huang, Ying
    Zhang, Yinhui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (12) : 2237 - 2243
  • [10] Global Context Reasoning for Semantic Segmentation of 3D Point Clouds
    Ma, Yanni
    Guo, Yulan
    Liu, Hao
    Lei, Yinjie
    Wen, Gongjian
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 2920 - 2929