Parametric analysis of CO2 hydrogenation via Fischer-Tropsch synthesis: A review based on machine learning for quantitative assessment

被引:4
|
作者
Hu, Jing [1 ]
Wang, Yixao [2 ]
Zhang, Xiyue [3 ]
Wang, Yunshan [4 ]
Yang, Gang [4 ,8 ]
Shi, Lufang [5 ]
Sun, Yong [6 ,7 ]
机构
[1] Stanford Univ, Doerr Sch Sustainabil, Stanford, CA 94305 USA
[2] Univ Coll London UCL, Inst Mat Discovery, London WC1H 0AJ, England
[3] Imperial Coll London, Dept Civil & Environm Engn, London SW7 2AZ, England
[4] Chinese Acad Sci, Natl Engn Lab Hydromet Cleaner Prod Technol, Inst Proc Engn, Beijing 100190, Peoples R China
[5] Each Energy Australia, James Ruse Dr, Sydney, NSW 2116, Australia
[6] Edith Cowan Univ, Sch Engn, 270 Joondalup Dr, Joondalup, WA 6027, Australia
[7] Univ Nottingham Ningbo China, Key Lab More Elect Aircraft Technol Zhejiang Prov, Ningbo 315100, Peoples R China
[8] Chinese Acad Sci, Inst Proc Engn, Beijing, Peoples R China
关键词
Artificial neural networks; CO; 2; hydrogenation; Fischer-Tropsch synthesis; Parametric analysis; Review; IRON-BASED CATALYST; RESPONSE-SURFACE METHODOLOGY; HYBRID EXPERT SYSTEM; LIGHT OLEFINS; CRYSTALLITE SIZE; FE CATALYSTS; MN PROMOTER; DATA-DRIVEN; PERFORMANCE; SELECTIVITY;
D O I
10.1016/j.ijhydene.2024.02.055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This review focuses on the parametric impacts upon conversion and selectivity during CO2 hydrogenation via Fischer-Tropsch (FT) synthesis using iron-based catalyst to provide quantitative evaluation. Using all collected data from reported literatures as training dataset via artificial neural networks (ANNs) in TensorFlow, three categorized parameters (namely: operational, catalyst informatic and mass transfer) were deployed to assess their impacts upon conversions (CO2) and selectivity. The lump kinetic power expressions among literature reports were compared, and the best fit model is the one that was proposed by this work without arbitrarily assuming power values of individual partial pressure (CO and H2). More than five sets of binary parameters were systematically investigated to find out corresponding evolving patterns in conversion and selectivity. Aided by machine learning, tailoring product distributions based on specific selectivity or conversion for optimization purpose is practically achievable by deploying the predictions generated from ANNs in this work.
引用
收藏
页码:1023 / 1041
页数:19
相关论文
共 50 条
  • [1] Membrane application in Fischer-Tropsch synthesis to enhance CO2 hydrogenation
    Rohde, MP
    Unruh, D
    Schaub, G
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (25) : 9653 - 9658
  • [2] CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts
    Zhang, YQ
    Jacobs, G
    Sparks, DE
    Dry, ME
    Davis, BH
    CATALYSIS TODAY, 2002, 71 (3-4) : 411 - 418
  • [3] Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols
    Zeng, Zhuang
    Li, Kezhi
    Yuan, Zhiwei
    Du, Jintao
    Li, Zhuoshi
    Wang, Yue
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2024, 43 (06): : 3061 - 3079
  • [4] Combinations of CO/CO2 reactions with Fischer-Tropsch synthesis
    Iglesias, M.
    Edzang, R.
    Schaub, G.
    CATALYSIS TODAY, 2013, 215 : 194 - 200
  • [5] CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts
    Visconti, Carlo Giorgio
    Martinelli, Michela
    Falbo, Leonardo
    Fratalocchi, Laura
    Lietti, Luca
    CATALYSIS TODAY, 2016, 277 : 161 - 170
  • [6] Evidence of Highly Active Cobalt Oxide Catalyst for the Fischer-Tropsch Synthesis and CO2 Hydrogenation
    Melaet, Gerome
    Ralston, Walter T.
    Li, Cheng-Shiuan
    Alayoglu, Selim
    An, Kwangjin
    Musselwhite, Nathan
    Kalkan, Bora
    Somorjai, Gabor A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (06) : 2260 - 2263
  • [7] Fischer-Tropsch synthesis using bio-syngas and CO2
    Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
    Energy Sustainable Dev., 2007, 4 (66-71):
  • [8] Parametric Analysis of Fischer-Tropsch Synthesis in a Catalytic Microchannel Reactor
    Gumuslu, Gamze
    Avci, Ahmet K.
    AICHE JOURNAL, 2012, 58 (01) : 227 - 235
  • [9] Application of Machine Learning to Fischer-Tropsch Synthesis for Cobalt Catalysts
    Motaev, Kirill
    Molokeev, Maxim
    Sultanov, Bulat
    Kharitontsev, Vladimir
    Matigorov, Alexey
    Palianov, Mikhail
    Azarapin, Nikita
    Elyshev, Andrey
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (48) : 20658 - 20666
  • [10] Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer-Tropsch Synthesis
    Chen, Wei
    Filot, Ivo A. W.
    Pestman, Robert
    Hensen, Ernie J. M.
    ACS CATALYSIS, 2017, 7 (12): : 8061 - 8071