Virial coefficients of the uniform electron gas from path-integral Monte Carlo simulations

被引:2
|
作者
Roepke, G. [1 ]
Dornheim, T. [2 ]
Vorberger, J. [3 ]
Blaschke, D. [2 ,4 ]
Mahato, B. [4 ]
机构
[1] Univ Rostock, Inst Phys, Albert Einstein Str 23-24, D-18059 Rostock, Germany
[2] Helmholtz Zentrum Dresden Rossendorf HZDR, Ctr Adv Syst Understanding CASUS, D-02826 Gorlitz, Germany
[3] Helmholtz Zentrum Dresden Rossendorf HZDR, Inst Radiat Phys, D-01328 Dresden, Germany
[4] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland
基金
欧洲研究理事会;
关键词
HYDROGEN GAS; EQUATION; STATE;
D O I
10.1103/PhysRevE.109.025202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The properties of plasmas in the low-density limit are described by virial expansions. Analytical expressions are known from Green's function approaches only for the first three virial coefficients. Accurate path-integral Monte Carlo (PIMC) simulations have recently been performed for the uniform electron gas, allowing the virial expansions to be analyzed and interpolation formulas to be derived. The exact expression for the second virial coefficient is used to test the accuracy of the PIMC simulations and the range of validity of the interpolation formula of Groth et al. [Phys. Rev. Lett. 119, 135001 (2017)], and we discuss the fourth virial coefficient, which is not exactly known yet. Combining PIMC simulations with benchmarks from exact virial expansion results would allow us to obtain more accurate representations of the equation of state for parameter ranges of conditions which are of interest, e.g., for helioseismology.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature
    Filinov, V. S.
    Fortov, V. E.
    Bonitz, M.
    Moldabekov, Zh.
    PHYSICAL REVIEW E, 2015, 91 (03):
  • [2] Path-integral Monte Carlo simulations of a supercritical fluid
    Lacks, DJ
    PHYSICAL REVIEW B, 1997, 56 (21): : 13927 - 13931
  • [3] PATH-INTEGRAL MONTE-CARLO SIMULATIONS OF ELECTRON LOCALIZATION IN WATER CLUSTERS
    THIRUMALAI, D
    WALLQVIST, A
    BERNE, BJ
    JOURNAL OF STATISTICAL PHYSICS, 1986, 43 (5-6) : 973 - 984
  • [4] Uniform electron gas at finite temperature by fermionic-path-integral Monte Carlo simulations
    Filinov, V. S.
    Larkin, A. S.
    Levashov, P. R.
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [5] Path-Integral Monte Carlo Simulation of the Warm Dense Homogeneous Electron Gas
    Brown, Ethan W.
    Clark, Bryan K.
    DuBois, Jonathan L.
    Ceperley, David M.
    PHYSICAL REVIEW LETTERS, 2013, 110 (14)
  • [6] Optimal energy estimation in path-integral Monte Carlo simulations
    Janke, W
    Sauer, T
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (15): : 5821 - 5839
  • [7] Ab Initio Path Integral Monte Carlo Simulations of the Uniform Electron Gas on Large Length Scales
    Dornheim, Tobias
    Schwalbe, Sebastian
    Moldabekov, Zhandos A.
    Vorberger, Jan
    Tolias, Panagiotis
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (05): : 1305 - 1313
  • [8] Path-integral Monte Carlo simulations of solid neon at room temperature
    Neumann, M
    Zoppi, M
    PHYSICAL REVIEW B, 2000, 62 (01): : 41 - 44
  • [9] MELTING OF NEON CLUSTERS - PATH-INTEGRAL MONTE-CARLO SIMULATIONS
    CHAKRAVARTY, C
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (02): : 956 - 962
  • [10] The uniform electron gas at high temperatures: ab initio path integral Monte Carlo simulations and analytical theory
    Dornheim, Tobias
    Vorberger, Jan
    Moldabekov, Zhandos
    Roepke, Gerd
    Kraeft, Wolf-Dietrich
    HIGH ENERGY DENSITY PHYSICS, 2022, 45