Regulating the relationship between Zn2+ and water molecules in electrolytes for aqueous zinc-based batteries

被引:15
|
作者
Chen, Jiahao [1 ]
Yan, Zhongfu [1 ]
Li, Kun [1 ]
Hu, Anjun [1 ,2 ]
Yang, Borui [1 ]
Li, Ting [1 ]
He, Miao [1 ]
Li, Yuanjian [3 ]
Seh, Zhi Wei [3 ]
Long, Jianping [1 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu, Sichuan, Peoples R China
[2] Chengdu Univ Technol, Coll Comp Sci & Cyber Secur, Chengdu, Sichuan, Peoples R China
[3] ASTAR, Agcy Sci Technol & Res ASTAR, Singapore, Singapore
来源
BATTERY ENERGY | 2024年 / 3卷 / 02期
基金
中国国家自然科学基金;
关键词
anode interface engineering; aqueous Zn-based batteries; coordination between Zn2+/H2O; electrolyte engineering; side reactions; ANODES; CHALLENGES; STRATEGIES; CHEMISTRY; HYDROGEN;
D O I
10.1002/bte2.20230063
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Aqueous zinc-based batteries (AZBs) with the advantages of high safety, low cost, and satisfactory energy density are regarded as one of the most promising candidates for future energy storage systems. Rampant dendrite growth and severe side reactions that occur at the Zn anode hinder its further development. Recently, a growing number of studies have demonstrated that side reactions are closely related to the active water molecules belonging to the Zn2+ solvated structure in the electrolyte, and reducing the occurrence of side reactions by regulating the relationship between the above two has proven to be a reliable pathway. Nevertheless, a systematic summary of the intrinsic mechanisms and practical applications of the route is lacking. This review presents a detailed description of the close connection between H2O and side reactions at Zn anodes and gives a comprehensive review of experimental strategies to inhibit side reactions by modulating the relationship between Zn2+ and H2O, including anode interface engineering and electrolyte engineering. In addition, further implementation of the above strategies and the modification means for future Zn anodes are discussed.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Strategies of regulating Zn2+ solvation structures toward advanced aqueous zinc-based batteries
    Wang H.
    Wang K.
    Jing E.
    Wei M.
    Xiong J.
    Zhong D.
    Zuo Y.
    Liang B.
    Pei P.
    Energy Storage Materials, 2024, 70
  • [2] Review of regulating Zn2+ solvation structures in aqueous zinc-ion batteries
    Zhang, Wanyao
    Chen, Yufang
    Gao, Hongjing
    Xie, Wei
    Gao, Peng
    Zheng, Chunman
    Xiao, Peitao
    MATERIALS FUTURES, 2023, 2 (04):
  • [3] Regulating zinc metal anodes via novel electrolytes in rechargeable zinc-based batteries
    Li, ChenChen
    Wu, Qian
    Ma, Jian
    Pan, Hongge
    Liu, Yanxia
    Lu, Yingying
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (28) : 14692 - 14708
  • [4] A nanocellulose-mediated, multiscale ion-sieving separator with selective Zn2+ channels for durable aqueous zinc-based batteries
    Zhang, Ying
    Zeng, Zhi
    Yang, Shanchen
    Zhang, Yaxin
    Ma, Yue
    Wang, Zhaohui
    ENERGY STORAGE MATERIALS, 2023, 57 : 557 - 567
  • [5] Organic Fillers Regulating the Solvation Structure of Zinc Ions in Aqueous Electrolytes for High-Stability Zn2+/Li+ Hybrid Batteries
    Su, Qiong
    Song, Yexin
    Qin, Yi
    Liu, Li
    Chen, Wanping
    Mo, Min
    Guo, Shan
    Liang, Shuquan
    Fang, Guozhao
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (21) : 11299 - 11307
  • [6] Zinc Powder Anodes for Rechargeable Aqueous Zinc-Based Batteries
    Li, Qing
    Li, Nan
    Zhi, Chunyi
    NANO LETTERS, 2024, 24 (14) : 4055 - 4063
  • [7] Electrodeposited Zinc-Based Films as Anodes for Aqueous Zinc Batteries
    Fayette, Matthew
    Chang, Hee Jung
    Rodriguez-Perez, Ismael A.
    Li, Xiaolin
    Reed, David
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (38) : 42763 - 42772
  • [8] Gelation mechanisms of gel polymer electrolytes for zinc-based batteries
    Mengjun Sun
    Zhi Wang
    Jvhui Jiang
    Xiaobing Wang
    Chuang Yu
    Chinese Chemical Letters, 2024, 35 (05) : 123 - 142
  • [9] Gelation mechanisms of gel polymer electrolytes for zinc-based batteries
    Sun, Mengjun
    Wang, Zhi
    Jiang, Jvhui
    Wang, Xiaobing
    Yu, Chuang
    CHINESE CHEMICAL LETTERS, 2024, 35 (05)
  • [10] Hydrogel Electrolytes for Quasi-Solid Zinc-Based Batteries
    Lu, Kang
    Jiang, Tongtong
    Hu, Haibo
    Wu, Mingzai
    FRONTIERS IN CHEMISTRY, 2020, 8