Is Multi-Modal Necessarily Better? Robustness Evaluation of Multi-Modal Fake News Detection

被引:4
|
作者
Chen, Jinyin [1 ,2 ]
Jia, Chengyu [3 ]
Zheng, Haibin [3 ]
Chen, Ruoxi [3 ]
Fu, Chenbo [1 ,2 ]
机构
[1] Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Peoples R China
[3] Zhejiang Univ Technol, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Detectors; Fake news; Robustness; Social networking (online); Feature extraction; Visualization; Games; Generative adversarial networks; Adversarial attack; backdoor attack; bias evaluation; fake news detection; multi-modal; robustness evaluation;
D O I
10.1109/TNSE.2023.3249290
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The proliferation of fake news and its serious negative social influence push fake news detection methods to become necessary tools for web managers. Meanwhile, the multi-media nature of social media makes multi-modal fake news detection popular for its ability to capture more modal features than uni-modal detection methods. However, current literature on multi-modal detection is more likely to pursue the detection accuracy but ignore the robustness (the detection ability in the case of abnormality and malicious attack) of the detector. To address this problem, we propose a comprehensive robustness evaluation of multi-modal fake news detectors. In this work, we simulate the attack methods of malicious users and developers, i.e., posting fake news and injecting backdoors. Specifically, we evaluate multi-modal detectors with five adversarial and two backdoor attack methods. Experiment results imply that: (1) The detection performance of the state-of-the-art detectors degrades significantly under adversarial attacks, e.g., BDANN's detection accuracy on malicious news drops by 47% compared to normal, even worse than general detectors (Att-RNN); (2) Most multimodal detectors are more vulnerable to visual modality than textual modality; (3) Backdoor attacks on popular events news severely degrade detectors (accuracy dropped by an average of 20%); (4) These detectors degrade more (another 2% reduction in accuracy) when subjected to multi-modal attacks; (5) Defense methods will improve the robustness of multi-modal detectors, but cannot fully resist the effects of malicious attacks.
引用
收藏
页码:3144 / 3158
页数:15
相关论文
共 50 条
  • [1] Multi-modal Chinese Fake News Detection
    Huang, Wenxi
    Zhao, Zhangyi
    Chen, Xiaojun
    Li, Mark Junjie
    Zhang, Qin
    Fournier-Viger, Philippe
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 109 - 117
  • [2] Multi-modal transformer for fake news detection
    Yang, Pingping
    Ma, Jiachen
    Liu, Yong
    Liu, Meng
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 14699 - 14717
  • [3] ConvNet frameworks for multi-modal fake news detection
    Chahat Raj
    Priyanka Meel
    Applied Intelligence, 2021, 51 : 8132 - 8148
  • [4] An effective strategy for multi-modal fake news detection
    Xu Peng
    Bao Xintong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 13799 - 13822
  • [5] Multi-Modal Component Embedding for Fake News Detection
    Kang, SeongKu
    Hwang, Junyoung
    Yu, Hwanjo
    PROCEEDINGS OF THE 2020 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM), 2020,
  • [6] An effective strategy for multi-modal fake news detection
    Xu Peng
    Bao Xintong
    Multimedia Tools and Applications, 2022, 81 : 13799 - 13822
  • [7] ConvNet frameworks for multi-modal fake news detection
    Raj, Chahat
    Meel, Priyanka
    APPLIED INTELLIGENCE, 2021, 51 (11) : 8132 - 8148
  • [8] SpotFake: A Multi-modal Framework for Fake News Detection
    Singhal, Shivangi
    Shah, Rajiv Ratn
    Chakraborty, Tanmoy
    Kumaraguru, Ponnurangam
    Satoh, Shin'ichi
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 39 - 47
  • [9] Multi-modal Robustness Fake News Detection with Cross-Modal and Propagation Network Contrastive Learning
    Chen, Han
    Wang, Hairong
    Liu, Zhipeng
    Li, Yuhua
    Hu, Yifan
    Zhang, Yujing
    Shu, Kai
    Li, Ruixuan
    Yu, Philip S.
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [10] MAFE: Multi-modal Alignment via Mutual Information Maximum Perspective in Multi-modal Fake News Detection
    Qin, Haimei
    Jing, Yaqi
    Duan, Yunqiang
    Jiang, Lei
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1515 - 1521